ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -10,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x+10\right), ਜੋ x+10,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x ਨੂੰ x+10 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
570x+x^{2}=\left(x+10\right)\times 560
570x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x\times 560 ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
570x+x^{2}=560x+5600
x+10 ਨੂੰ 560 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
570x+x^{2}-560x=5600
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 560x ਨੂੰ ਘਟਾ ਦਿਓ।
10x+x^{2}=5600
10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 570x ਅਤੇ -560x ਨੂੰ ਮਿਲਾਓ।
10x+x^{2}-5600=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5600 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}+10x-5600=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-10±\sqrt{10^{2}-4\left(-5600\right)}}{2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 1 ਨੂੰ a ਲਈ, 10 ਨੂੰ b ਲਈ, ਅਤੇ -5600 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-10±\sqrt{100-4\left(-5600\right)}}{2}
10 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-10±\sqrt{100+22400}}{2}
-4 ਨੂੰ -5600 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-10±\sqrt{22500}}{2}
100 ਨੂੰ 22400 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-10±150}{2}
22500 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{140}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-10±150}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -10 ਨੂੰ 150 ਵਿੱਚ ਜੋੜੋ।
x=70
140 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=-\frac{160}{2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-10±150}{2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -10 ਵਿੱਚੋਂ 150 ਨੂੰ ਘਟਾਓ।
x=-80
-160 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=70 x=-80
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
ਵੇਰੀਏਬਲ x ਕਿਸੇ ਵੀ ਇੱਕ -10,0 ਵੈਲਯੂ ਦੇ ਬਰਾਬਰ ਨਹੀਂ ਹੋ ਸਕਦਾ, ਕਿਉਂਕਿ ਸਿਫਰ ਦੁਆਰਾ ਵਿਭਾਜਨ ਨੂੰ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਕੀਤਾ ਗਿਆ ਹੈ। ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ x\left(x+10\right), ਜੋ x+10,x ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x ਨੂੰ x+10 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
570x+x^{2}=\left(x+10\right)\times 560
570x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x\times 560 ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
570x+x^{2}=560x+5600
x+10 ਨੂੰ 560 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
570x+x^{2}-560x=5600
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 560x ਨੂੰ ਘਟਾ ਦਿਓ।
10x+x^{2}=5600
10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 570x ਅਤੇ -560x ਨੂੰ ਮਿਲਾਓ।
x^{2}+10x=5600
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
x^{2}+10x+5^{2}=5600+5^{2}
10, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ। ਫੇਰ, 5 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+10x+25=5600+25
5 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}+10x+25=5625
5600 ਨੂੰ 25 ਵਿੱਚ ਜੋੜੋ।
\left(x+5\right)^{2}=5625
ਫੈਕਟਰ x^{2}+10x+25। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+5\right)^{2}}=\sqrt{5625}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+5=75 x+5=-75
ਸਪਸ਼ਟ ਕਰੋ।
x=70 x=-80
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।