ਫੈਕਟਰ
\left(z-6\right)\left(5z-3\right)
ਮੁਲਾਂਕਣ ਕਰੋ
\left(z-6\right)\left(5z-3\right)
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
a+b=-33 ab=5\times 18=90
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 5z^{2}+az+bz+18 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-90 -2,-45 -3,-30 -5,-18 -6,-15 -9,-10
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 90 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-90=-91 -2-45=-47 -3-30=-33 -5-18=-23 -6-15=-21 -9-10=-19
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-30 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -33 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(5z^{2}-30z\right)+\left(-3z+18\right)
5z^{2}-33z+18 ਨੂੰ \left(5z^{2}-30z\right)+\left(-3z+18\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
5z\left(z-6\right)-3\left(z-6\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 5z ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(z-6\right)\left(5z-3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ z-6 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
5z^{2}-33z+18=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
z=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 5\times 18}}{2\times 5}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
z=\frac{-\left(-33\right)±\sqrt{1089-4\times 5\times 18}}{2\times 5}
-33 ਦਾ ਵਰਗ ਕਰੋ।
z=\frac{-\left(-33\right)±\sqrt{1089-20\times 18}}{2\times 5}
-4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{-\left(-33\right)±\sqrt{1089-360}}{2\times 5}
-20 ਨੂੰ 18 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{-\left(-33\right)±\sqrt{729}}{2\times 5}
1089 ਨੂੰ -360 ਵਿੱਚ ਜੋੜੋ।
z=\frac{-\left(-33\right)±27}{2\times 5}
729 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
z=\frac{33±27}{2\times 5}
-33 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 33 ਹੈ।
z=\frac{33±27}{10}
2 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
z=\frac{60}{10}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{33±27}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 33 ਨੂੰ 27 ਵਿੱਚ ਜੋੜੋ।
z=6
60 ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
z=\frac{6}{10}
ਹੁਣ, ਸਮੀਕਰਨ z=\frac{33±27}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 33 ਵਿੱਚੋਂ 27 ਨੂੰ ਘਟਾਓ।
z=\frac{3}{5}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{10} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
5z^{2}-33z+18=5\left(z-6\right)\left(z-\frac{3}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 6ਅਤੇ x_{2} ਲਈ \frac{3}{5} ਬਦਲ ਹੈ।
5z^{2}-33z+18=5\left(z-6\right)\times \frac{5z-3}{5}
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ z ਵਿੱਚੋਂ \frac{3}{5} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
5z^{2}-33z+18=\left(z-6\right)\left(5z-3\right)
5 ਅਤੇ 5 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 5 ਨੂੰ ਰੱਦ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}