ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

5x^{2}-4x+70=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 5\times 70}}{2\times 5}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 5 ਨੂੰ a ਲਈ, -4 ਨੂੰ b ਲਈ, ਅਤੇ 70 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-4\right)±\sqrt{16-4\times 5\times 70}}{2\times 5}
-4 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16-20\times 70}}{2\times 5}
-4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{16-1400}}{2\times 5}
-20 ਨੂੰ 70 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-4\right)±\sqrt{-1384}}{2\times 5}
16 ਨੂੰ -1400 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-4\right)±2\sqrt{346}i}{2\times 5}
-1384 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{4±2\sqrt{346}i}{2\times 5}
-4 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 4 ਹੈ।
x=\frac{4±2\sqrt{346}i}{10}
2 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4+2\sqrt{346}i}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±2\sqrt{346}i}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 4 ਨੂੰ 2i\sqrt{346} ਵਿੱਚ ਜੋੜੋ।
x=\frac{2+\sqrt{346}i}{5}
4+2i\sqrt{346} ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{346}i+4}{10}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{4±2\sqrt{346}i}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 4 ਵਿੱਚੋਂ 2i\sqrt{346} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{346}i+2}{5}
4-2i\sqrt{346} ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{2+\sqrt{346}i}{5} x=\frac{-\sqrt{346}i+2}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5x^{2}-4x+70=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
5x^{2}-4x+70-70=-70
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 70 ਨੂੰ ਘਟਾਓ।
5x^{2}-4x=-70
70 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{5x^{2}-4x}{5}=-\frac{70}{5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{4}{5}x=-\frac{70}{5}
5 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 5 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{4}{5}x=-14
-70 ਨੂੰ 5 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{4}{5}x+\left(-\frac{2}{5}\right)^{2}=-14+\left(-\frac{2}{5}\right)^{2}
-\frac{4}{5}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{2}{5} ਨਿਕਲੇ। ਫੇਰ, -\frac{2}{5} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{4}{5}x+\frac{4}{25}=-14+\frac{4}{25}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{2}{5} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{4}{5}x+\frac{4}{25}=-\frac{346}{25}
-14 ਨੂੰ \frac{4}{25} ਵਿੱਚ ਜੋੜੋ।
\left(x-\frac{2}{5}\right)^{2}=-\frac{346}{25}
ਫੈਕਟਰ x^{2}-\frac{4}{5}x+\frac{4}{25}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{2}{5}\right)^{2}}=\sqrt{-\frac{346}{25}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{2}{5}=\frac{\sqrt{346}i}{5} x-\frac{2}{5}=-\frac{\sqrt{346}i}{5}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{2+\sqrt{346}i}{5} x=\frac{-\sqrt{346}i+2}{5}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{2}{5} ਨੂੰ ਜੋੜੋ।