ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

5x^{2}=6-27
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 27 ਨੂੰ ਘਟਾ ਦਿਓ।
5x^{2}=-21
-21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 6 ਵਿੱਚੋਂ 27 ਨੂੰ ਘਟਾ ਦਿਓ।
x^{2}=-\frac{21}{5}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 5 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{\sqrt{105}i}{5} x=-\frac{\sqrt{105}i}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5x^{2}+27-6=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
5x^{2}+21=0
21 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 27 ਵਿੱਚੋਂ 6 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{0±\sqrt{0^{2}-4\times 5\times 21}}{2\times 5}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 5 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ 21 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{0±\sqrt{-4\times 5\times 21}}{2\times 5}
0 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{0±\sqrt{-20\times 21}}{2\times 5}
-4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±\sqrt{-420}}{2\times 5}
-20 ਨੂੰ 21 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{0±2\sqrt{105}i}{2\times 5}
-420 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{0±2\sqrt{105}i}{10}
2 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{105}i}{5}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±2\sqrt{105}i}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ।
x=-\frac{\sqrt{105}i}{5}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{0±2\sqrt{105}i}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\frac{\sqrt{105}i}{5} x=-\frac{\sqrt{105}i}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।