ਫੈਕਟਰ
5\left(f-5\right)\left(f-3\right)
ਮੁਲਾਂਕਣ ਕਰੋ
5\left(f-5\right)\left(f-3\right)
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
5\left(f^{2}-8f+15\right)
5 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
a+b=-8 ab=1\times 15=15
f^{2}-8f+15 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ f^{2}+af+bf+15 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-15 -3,-5
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 15 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-15=-16 -3-5=-8
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-5 b=-3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -8 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(f^{2}-5f\right)+\left(-3f+15\right)
f^{2}-8f+15 ਨੂੰ \left(f^{2}-5f\right)+\left(-3f+15\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
f\left(f-5\right)-3\left(f-5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ f ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(f-5\right)\left(f-3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ f-5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
5\left(f-5\right)\left(f-3\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
5f^{2}-40f+75=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
f=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 75}}{2\times 5}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
f=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 75}}{2\times 5}
-40 ਦਾ ਵਰਗ ਕਰੋ।
f=\frac{-\left(-40\right)±\sqrt{1600-20\times 75}}{2\times 5}
-4 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
f=\frac{-\left(-40\right)±\sqrt{1600-1500}}{2\times 5}
-20 ਨੂੰ 75 ਵਾਰ ਗੁਣਾ ਕਰੋ।
f=\frac{-\left(-40\right)±\sqrt{100}}{2\times 5}
1600 ਨੂੰ -1500 ਵਿੱਚ ਜੋੜੋ।
f=\frac{-\left(-40\right)±10}{2\times 5}
100 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
f=\frac{40±10}{2\times 5}
-40 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 40 ਹੈ।
f=\frac{40±10}{10}
2 ਨੂੰ 5 ਵਾਰ ਗੁਣਾ ਕਰੋ।
f=\frac{50}{10}
ਹੁਣ, ਸਮੀਕਰਨ f=\frac{40±10}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 40 ਨੂੰ 10 ਵਿੱਚ ਜੋੜੋ।
f=5
50 ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
f=\frac{30}{10}
ਹੁਣ, ਸਮੀਕਰਨ f=\frac{40±10}{10} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 40 ਵਿੱਚੋਂ 10 ਨੂੰ ਘਟਾਓ।
f=3
30 ਨੂੰ 10 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
5f^{2}-40f+75=5\left(f-5\right)\left(f-3\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 5ਅਤੇ x_{2} ਲਈ 3 ਬਦਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}