x ਲਈ ਹਲ ਕਰੋ
x=7-\sqrt{21}\approx 2.417424305
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-\sqrt{4x-3}=x-5
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾਓ।
\left(-\sqrt{4x-3}\right)^{2}=\left(x-5\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
\left(-1\right)^{2}\left(\sqrt{4x-3}\right)^{2}=\left(x-5\right)^{2}
\left(-\sqrt{4x-3}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
1\left(\sqrt{4x-3}\right)^{2}=\left(x-5\right)^{2}
-1 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 1 ਪ੍ਰਾਪਤ ਕਰੋ।
1\left(4x-3\right)=\left(x-5\right)^{2}
\sqrt{4x-3} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 4x-3 ਪ੍ਰਾਪਤ ਕਰੋ।
4x-3=\left(x-5\right)^{2}
1 ਨੂੰ 4x-3 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x-3=x^{2}-10x+25
\left(x-5\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
4x-3-x^{2}=-10x+25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4x-3-x^{2}+10x=25
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x ਜੋੜੋ।
14x-3-x^{2}=25
14x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4x ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
14x-3-x^{2}-25=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
14x-28-x^{2}=0
-28 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -3 ਵਿੱਚੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
-x^{2}+14x-28=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-14±\sqrt{14^{2}-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -1 ਨੂੰ a ਲਈ, 14 ਨੂੰ b ਲਈ, ਅਤੇ -28 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-14±\sqrt{196-4\left(-1\right)\left(-28\right)}}{2\left(-1\right)}
14 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-14±\sqrt{196+4\left(-28\right)}}{2\left(-1\right)}
-4 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-14±\sqrt{196-112}}{2\left(-1\right)}
4 ਨੂੰ -28 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-14±\sqrt{84}}{2\left(-1\right)}
196 ਨੂੰ -112 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-14±2\sqrt{21}}{2\left(-1\right)}
84 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-14±2\sqrt{21}}{-2}
2 ਨੂੰ -1 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{21}-14}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-14±2\sqrt{21}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -14 ਨੂੰ 2\sqrt{21} ਵਿੱਚ ਜੋੜੋ।
x=7-\sqrt{21}
-14+2\sqrt{21} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{21}-14}{-2}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-14±2\sqrt{21}}{-2} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -14 ਵਿੱਚੋਂ 2\sqrt{21} ਨੂੰ ਘਟਾਓ।
x=\sqrt{21}+7
-14-2\sqrt{21} ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=7-\sqrt{21} x=\sqrt{21}+7
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
5-\sqrt{4\left(7-\sqrt{21}\right)-3}=7-\sqrt{21}
ਸਮੀਕਰਨ 5-\sqrt{4x-3}=x ਵਿੱਚ, x ਲਈ 7-\sqrt{21} ਨੂੰ ਬਦਲ ਦਿਓ।
7-21^{\frac{1}{2}}=7-21^{\frac{1}{2}}
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=7-\sqrt{21} ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
5-\sqrt{4\left(\sqrt{21}+7\right)-3}=\sqrt{21}+7
ਸਮੀਕਰਨ 5-\sqrt{4x-3}=x ਵਿੱਚ, x ਲਈ \sqrt{21}+7 ਨੂੰ ਬਦਲ ਦਿਓ।
3-21^{\frac{1}{2}}=21^{\frac{1}{2}}+7
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=\sqrt{21}+7 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਕਿਉਂਕਿ ਨੂੰ ਖੱਬੇ ਅਤੇ ਸੱਜੇ ਪਾਸੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹਨ।
x=7-\sqrt{21}
ਸਮੀਕਰਨ -\sqrt{4x-3}=x-5 ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}