x ਲਈ ਹਲ ਕਰੋ
x\leq 19
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
50\left(\frac{x}{5}+\frac{10}{2}\right)\geq 20x+2\times 30
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 10, ਜੋ 5,2 ਦਾ ਲੀਸਟ ਕੋਮਨ ਡੀਨੋਮਿਨੇਟਰ ਹੈ, ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ। ਕਿਉਂਕਿ 10, >0 ਹੈ, ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਇੱਕ ਸਮਾਨ ਰਹਿੰਦੀ ਹੈ।
50\left(\frac{x}{5}+5\right)\geq 20x+2\times 30
10 ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 5 ਨਿਕਲੇ।
50\times \frac{x}{5}+250\geq 20x+2\times 30
50 ਨੂੰ \frac{x}{5}+5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
10x+250\geq 20x+2\times 30
50 ਅਤੇ 5 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 5 ਨੂੰ ਰੱਦ ਕਰੋ।
10x+250\geq 20x+60
60 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 30 ਨੂੰ ਗੁਣਾ ਕਰੋ।
10x+250-20x\geq 60
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 20x ਨੂੰ ਘਟਾ ਦਿਓ।
-10x+250\geq 60
-10x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 10x ਅਤੇ -20x ਨੂੰ ਮਿਲਾਓ।
-10x\geq 60-250
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 250 ਨੂੰ ਘਟਾ ਦਿਓ।
-10x\geq -190
-190 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 60 ਵਿੱਚੋਂ 250 ਨੂੰ ਘਟਾ ਦਿਓ।
x\leq \frac{-190}{-10}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -10 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ। ਕਿਉਂਕਿ -10, <0 ਹੈ, ਅਸਮਾਨਤਾ ਦਿਸ਼ਾ ਬਦਲ ਜਾਂਦੀ ਹੈ।
x\leq 19
-190 ਨੂੰ -10 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 19 ਨਿਕਲੇ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}