5 = ( 1 + 9.6 \% ) ^ { n }
n ਲਈ ਹਲ ਕਰੋ
n=\log_{1.096}\left(5\right)\approx 17.557404545
n ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
n=\frac{i\times 2\pi n_{1}}{\ln(1.096)}+\log_{1.096}\left(5\right)
n_{1}\in \mathrm{Z}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
5=\left(1+\frac{96}{1000}\right)^{n}
ਨਿਉਮਰੇਟਰਾਂ ਅਤੇ ਡੀਨੋਮੀਨੇਟਰ ਦੋਹਾਂ ਨੂੰ 10 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{9.6}{100} ਦਾ ਵਿਸਤਾਰ ਕਰੋ।
5=\left(1+\frac{12}{125}\right)^{n}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{96}{1000} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
5=\left(\frac{137}{125}\right)^{n}
\frac{137}{125} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ \frac{12}{125} ਨੂੰ ਜੋੜੋ।
\left(\frac{137}{125}\right)^{n}=5
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\log(\left(\frac{137}{125}\right)^{n})=\log(5)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਲੋਗਾਰਿਥਮ ਲਓ।
n\log(\frac{137}{125})=\log(5)
ਪਾਵਰ ਤੱਕ ਵਧਾਏ ਗਏ ਨੰਬਰ ਦਾ ਲੋਗਾਰਿਥਮ ਨੰਬਰ ਦੇ ਲੋਗਾਰਿਥਮ ਨਾਲ ਪਾਵਰ ਦਾ ਗਣਨਫਲ ਹੁੰਦਾ ਹੈ।
n=\frac{\log(5)}{\log(\frac{137}{125})}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \log(\frac{137}{125}) ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
n=\log_{\frac{137}{125}}\left(5\right)
ਬੇਸ-ਦੇ-ਪਰਿਵਰਤਨ ਸੂਤਰ ਦੁਆਰਾ \frac{\log(a)}{\log(b)}=\log_{b}\left(a\right)।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}