x ਲਈ ਹਲ ਕਰੋ
x=\frac{1}{16}=0.0625
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
7\sqrt{x}=2-4x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x ਨੂੰ ਘਟਾਓ।
\left(7\sqrt{x}\right)^{2}=\left(2-4x\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
7^{2}\left(\sqrt{x}\right)^{2}=\left(2-4x\right)^{2}
\left(7\sqrt{x}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
49\left(\sqrt{x}\right)^{2}=\left(2-4x\right)^{2}
7 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 49 ਪ੍ਰਾਪਤ ਕਰੋ।
49x=\left(2-4x\right)^{2}
\sqrt{x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x ਪ੍ਰਾਪਤ ਕਰੋ।
49x=4-16x+16x^{2}
\left(2-4x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
49x-4=-16x+16x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4 ਨੂੰ ਘਟਾ ਦਿਓ।
49x-4+16x=16x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16x ਜੋੜੋ।
65x-4=16x^{2}
65x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 49x ਅਤੇ 16x ਨੂੰ ਮਿਲਾਓ।
65x-4-16x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 16x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-16x^{2}+65x-4=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=65 ab=-16\left(-4\right)=64
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -16x^{2}+ax+bx-4 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,64 2,32 4,16 8,8
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 64 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+64=65 2+32=34 4+16=20 8+8=16
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=64 b=1
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 65 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-16x^{2}+64x\right)+\left(x-4\right)
-16x^{2}+65x-4 ਨੂੰ \left(-16x^{2}+64x\right)+\left(x-4\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
16x\left(-x+4\right)-\left(-x+4\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 16x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-x+4\right)\left(16x-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -x+4 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=4 x=\frac{1}{16}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -x+4=0 ਅਤੇ 16x-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
4\times 4+7\sqrt{4}=2
ਸਮੀਕਰਨ 4x+7\sqrt{x}=2 ਵਿੱਚ, x ਲਈ 4 ਨੂੰ ਬਦਲ ਦਿਓ।
30=2
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=4 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਹੈ।
4\times \frac{1}{16}+7\sqrt{\frac{1}{16}}=2
ਸਮੀਕਰਨ 4x+7\sqrt{x}=2 ਵਿੱਚ, x ਲਈ \frac{1}{16} ਨੂੰ ਬਦਲ ਦਿਓ।
2=2
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=\frac{1}{16} ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=\frac{1}{16}
ਸਮੀਕਰਨ 7\sqrt{x}=2-4x ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}