ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

49x^{2}+2x-15=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-2±\sqrt{2^{2}-4\times 49\left(-15\right)}}{2\times 49}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 49 ਨੂੰ a ਲਈ, 2 ਨੂੰ b ਲਈ, ਅਤੇ -15 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-2±\sqrt{4-4\times 49\left(-15\right)}}{2\times 49}
2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-2±\sqrt{4-196\left(-15\right)}}{2\times 49}
-4 ਨੂੰ 49 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{4+2940}}{2\times 49}
-196 ਨੂੰ -15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{2944}}{2\times 49}
4 ਨੂੰ 2940 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-2±8\sqrt{46}}{2\times 49}
2944 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-2±8\sqrt{46}}{98}
2 ਨੂੰ 49 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{8\sqrt{46}-2}{98}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±8\sqrt{46}}{98} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -2 ਨੂੰ 8\sqrt{46} ਵਿੱਚ ਜੋੜੋ।
x=\frac{4\sqrt{46}-1}{49}
-2+8\sqrt{46} ਨੂੰ 98 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-8\sqrt{46}-2}{98}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±8\sqrt{46}}{98} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -2 ਵਿੱਚੋਂ 8\sqrt{46} ਨੂੰ ਘਟਾਓ।
x=\frac{-4\sqrt{46}-1}{49}
-2-8\sqrt{46} ਨੂੰ 98 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{4\sqrt{46}-1}{49} x=\frac{-4\sqrt{46}-1}{49}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
49x^{2}+2x-15=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
49x^{2}+2x-15-\left(-15\right)=-\left(-15\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 15 ਨੂੰ ਜੋੜੋ।
49x^{2}+2x=-\left(-15\right)
-15 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
49x^{2}+2x=15
0 ਵਿੱਚੋਂ -15 ਨੂੰ ਘਟਾਓ।
\frac{49x^{2}+2x}{49}=\frac{15}{49}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 49 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{2}{49}x=\frac{15}{49}
49 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 49 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{2}{49}x+\left(\frac{1}{49}\right)^{2}=\frac{15}{49}+\left(\frac{1}{49}\right)^{2}
\frac{2}{49}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{49} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{49} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{2}{49}x+\frac{1}{2401}=\frac{15}{49}+\frac{1}{2401}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{49} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{2}{49}x+\frac{1}{2401}=\frac{736}{2401}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{15}{49} ਨੂੰ \frac{1}{2401} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{1}{49}\right)^{2}=\frac{736}{2401}
ਫੈਕਟਰ x^{2}+\frac{2}{49}x+\frac{1}{2401}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{49}\right)^{2}}=\sqrt{\frac{736}{2401}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{49}=\frac{4\sqrt{46}}{49} x+\frac{1}{49}=-\frac{4\sqrt{46}}{49}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{4\sqrt{46}-1}{49} x=\frac{-4\sqrt{46}-1}{49}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{49} ਨੂੰ ਘਟਾਓ।