ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

12\left(4t-t^{2}\right)
12 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
t\left(4-t\right)
4t-t^{2} 'ਤੇ ਵਿਚਾਰ ਕਰੋ। t ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
12t\left(-t+4\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
-12t^{2}+48t=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
t=\frac{-48±\sqrt{48^{2}}}{2\left(-12\right)}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
t=\frac{-48±48}{2\left(-12\right)}
48^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t=\frac{-48±48}{-24}
2 ਨੂੰ -12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{0}{-24}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-48±48}{-24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -48 ਨੂੰ 48 ਵਿੱਚ ਜੋੜੋ।
t=0
0 ਨੂੰ -24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=-\frac{96}{-24}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{-48±48}{-24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -48 ਵਿੱਚੋਂ 48 ਨੂੰ ਘਟਾਓ।
t=4
-96 ਨੂੰ -24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
-12t^{2}+48t=-12t\left(t-4\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 0ਅਤੇ x_{2} ਲਈ 4 ਬਦਲ ਹੈ।