t ਲਈ ਹਲ ਕਰੋ
t = \frac{61}{11} = 5\frac{6}{11} \approx 5.545454545
t=0
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
t\left(44t-244\right)=0
t ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
t=0 t=\frac{61}{11}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, t=0 ਅਤੇ 44t-244=0 ਨੂੰ ਹੱਲ ਕਰੋ।
44t^{2}-244t=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
t=\frac{-\left(-244\right)±\sqrt{\left(-244\right)^{2}}}{2\times 44}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 44 ਨੂੰ a ਲਈ, -244 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
t=\frac{-\left(-244\right)±244}{2\times 44}
\left(-244\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t=\frac{244±244}{2\times 44}
-244 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 244 ਹੈ।
t=\frac{244±244}{88}
2 ਨੂੰ 44 ਵਾਰ ਗੁਣਾ ਕਰੋ।
t=\frac{488}{88}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{244±244}{88} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 244 ਨੂੰ 244 ਵਿੱਚ ਜੋੜੋ।
t=\frac{61}{11}
8 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{488}{88} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
t=\frac{0}{88}
ਹੁਣ, ਸਮੀਕਰਨ t=\frac{244±244}{88} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 244 ਵਿੱਚੋਂ 244 ਨੂੰ ਘਟਾਓ।
t=0
0 ਨੂੰ 88 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t=\frac{61}{11} t=0
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
44t^{2}-244t=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{44t^{2}-244t}{44}=\frac{0}{44}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 44 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
t^{2}+\left(-\frac{244}{44}\right)t=\frac{0}{44}
44 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 44 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
t^{2}-\frac{61}{11}t=\frac{0}{44}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-244}{44} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
t^{2}-\frac{61}{11}t=0
0 ਨੂੰ 44 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
t^{2}-\frac{61}{11}t+\left(-\frac{61}{22}\right)^{2}=\left(-\frac{61}{22}\right)^{2}
-\frac{61}{11}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{61}{22} ਨਿਕਲੇ। ਫੇਰ, -\frac{61}{22} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
t^{2}-\frac{61}{11}t+\frac{3721}{484}=\frac{3721}{484}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{61}{22} ਦਾ ਵਰਗ ਕੱਢੋ।
\left(t-\frac{61}{22}\right)^{2}=\frac{3721}{484}
ਫੈਕਟਰ t^{2}-\frac{61}{11}t+\frac{3721}{484}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(t-\frac{61}{22}\right)^{2}}=\sqrt{\frac{3721}{484}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
t-\frac{61}{22}=\frac{61}{22} t-\frac{61}{22}=-\frac{61}{22}
ਸਪਸ਼ਟ ਕਰੋ।
t=\frac{61}{11} t=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{61}{22} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}