ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

42x^{2}+13x-35=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-13±\sqrt{13^{2}-4\times 42\left(-35\right)}}{2\times 42}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 42 ਨੂੰ a ਲਈ, 13 ਨੂੰ b ਲਈ, ਅਤੇ -35 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-13±\sqrt{169-4\times 42\left(-35\right)}}{2\times 42}
13 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-13±\sqrt{169-168\left(-35\right)}}{2\times 42}
-4 ਨੂੰ 42 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-13±\sqrt{169+5880}}{2\times 42}
-168 ਨੂੰ -35 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-13±\sqrt{6049}}{2\times 42}
169 ਨੂੰ 5880 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-13±\sqrt{6049}}{84}
2 ਨੂੰ 42 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{6049}-13}{84}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-13±\sqrt{6049}}{84} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -13 ਨੂੰ \sqrt{6049} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\sqrt{6049}-13}{84}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-13±\sqrt{6049}}{84} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -13 ਵਿੱਚੋਂ \sqrt{6049} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{6049}-13}{84} x=\frac{-\sqrt{6049}-13}{84}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
42x^{2}+13x-35=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
42x^{2}+13x-35-\left(-35\right)=-\left(-35\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 35 ਨੂੰ ਜੋੜੋ।
42x^{2}+13x=-\left(-35\right)
-35 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
42x^{2}+13x=35
0 ਵਿੱਚੋਂ -35 ਨੂੰ ਘਟਾਓ।
\frac{42x^{2}+13x}{42}=\frac{35}{42}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 42 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{13}{42}x=\frac{35}{42}
42 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 42 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{13}{42}x=\frac{5}{6}
7 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{35}{42} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{13}{42}x+\left(\frac{13}{84}\right)^{2}=\frac{5}{6}+\left(\frac{13}{84}\right)^{2}
\frac{13}{42}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{13}{84} ਨਿਕਲੇ। ਫੇਰ, \frac{13}{84} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{13}{42}x+\frac{169}{7056}=\frac{5}{6}+\frac{169}{7056}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{13}{84} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{13}{42}x+\frac{169}{7056}=\frac{6049}{7056}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{5}{6} ਨੂੰ \frac{169}{7056} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{13}{84}\right)^{2}=\frac{6049}{7056}
ਫੈਕਟਰ x^{2}+\frac{13}{42}x+\frac{169}{7056}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{13}{84}\right)^{2}}=\sqrt{\frac{6049}{7056}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{13}{84}=\frac{\sqrt{6049}}{84} x+\frac{13}{84}=-\frac{\sqrt{6049}}{84}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{6049}-13}{84} x=\frac{-\sqrt{6049}-13}{84}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{13}{84} ਨੂੰ ਘਟਾਓ।