x ਲਈ ਹਲ ਕਰੋ
x = \frac{20 \sqrt{285} + 500}{17} \approx 49.272874137
x = \frac{500 - 20 \sqrt{285}}{17} \approx 9.550655275
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
40+0.085x^{2}-5x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x ਨੂੰ ਘਟਾ ਦਿਓ।
0.085x^{2}-5x+40=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 0.085\times 40}}{2\times 0.085}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 0.085 ਨੂੰ a ਲਈ, -5 ਨੂੰ b ਲਈ, ਅਤੇ 40 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-5\right)±\sqrt{25-4\times 0.085\times 40}}{2\times 0.085}
-5 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-5\right)±\sqrt{25-0.34\times 40}}{2\times 0.085}
-4 ਨੂੰ 0.085 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-5\right)±\sqrt{25-13.6}}{2\times 0.085}
-0.34 ਨੂੰ 40 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-5\right)±\sqrt{11.4}}{2\times 0.085}
25 ਨੂੰ -13.6 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-5\right)±\frac{\sqrt{285}}{5}}{2\times 0.085}
11.4 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{5±\frac{\sqrt{285}}{5}}{2\times 0.085}
-5 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5 ਹੈ।
x=\frac{5±\frac{\sqrt{285}}{5}}{0.17}
2 ਨੂੰ 0.085 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\frac{\sqrt{285}}{5}+5}{0.17}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{5±\frac{\sqrt{285}}{5}}{0.17} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 5 ਨੂੰ \frac{\sqrt{285}}{5} ਵਿੱਚ ਜੋੜੋ।
x=\frac{20\sqrt{285}+500}{17}
5+\frac{\sqrt{285}}{5} ਨੂੰ 0.17 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 5+\frac{\sqrt{285}}{5}ਨੂੰ 0.17 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-\frac{\sqrt{285}}{5}+5}{0.17}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{5±\frac{\sqrt{285}}{5}}{0.17} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 5 ਵਿੱਚੋਂ \frac{\sqrt{285}}{5} ਨੂੰ ਘਟਾਓ।
x=\frac{500-20\sqrt{285}}{17}
5-\frac{\sqrt{285}}{5} ਨੂੰ 0.17 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ 5-\frac{\sqrt{285}}{5}ਨੂੰ 0.17 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{20\sqrt{285}+500}{17} x=\frac{500-20\sqrt{285}}{17}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
40+0.085x^{2}-5x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x ਨੂੰ ਘਟਾ ਦਿਓ।
0.085x^{2}-5x=-40
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 40 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{0.085x^{2}-5x}{0.085}=-\frac{40}{0.085}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 0.085 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ, ਜੋ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ ਫ੍ਰੈਕਸ਼ਨ (ਉਪਅੰਸ਼) ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ (ਅੰਕ-ਵਿਉਂਤਕ੍ਰਮ) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਨ ਦੇ ਸਮਾਨ ਹੁੰਦਾ ਹੈ।
x^{2}+\left(-\frac{5}{0.085}\right)x=-\frac{40}{0.085}
0.085 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 0.085 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1000}{17}x=-\frac{40}{0.085}
-5 ਨੂੰ 0.085 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -5ਨੂੰ 0.085 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{1000}{17}x=-\frac{8000}{17}
-40 ਨੂੰ 0.085 ਦੇ ਰੈਸੀਪ੍ਰੋਕਲ ਨਾਲ ਗੁਣਾ ਕਰਕੇ -40ਨੂੰ 0.085 ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{1000}{17}x+\left(-\frac{500}{17}\right)^{2}=-\frac{8000}{17}+\left(-\frac{500}{17}\right)^{2}
-\frac{1000}{17}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{500}{17} ਨਿਕਲੇ। ਫੇਰ, -\frac{500}{17} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{1000}{17}x+\frac{250000}{289}=-\frac{8000}{17}+\frac{250000}{289}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{500}{17} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{1000}{17}x+\frac{250000}{289}=\frac{114000}{289}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{8000}{17} ਨੂੰ \frac{250000}{289} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{500}{17}\right)^{2}=\frac{114000}{289}
ਫੈਕਟਰ x^{2}-\frac{1000}{17}x+\frac{250000}{289}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{500}{17}\right)^{2}}=\sqrt{\frac{114000}{289}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{500}{17}=\frac{20\sqrt{285}}{17} x-\frac{500}{17}=-\frac{20\sqrt{285}}{17}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{20\sqrt{285}+500}{17} x=\frac{500-20\sqrt{285}}{17}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{500}{17} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}