b ਲਈ ਹਲ ਕਰੋ
b=-\frac{\sqrt{3}\left(x-4\sqrt{3}-7\right)}{3}
x ਲਈ ਹਲ ਕਰੋ
x=\sqrt{3}\left(4-b\right)+7
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
4+4\sqrt{3}+3=x+b\sqrt{3}
4\sqrt{3} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2\sqrt{3} ਅਤੇ 2\sqrt{3} ਨੂੰ ਮਿਲਾਓ।
7+4\sqrt{3}=x+b\sqrt{3}
7 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
x+b\sqrt{3}=7+4\sqrt{3}
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
b\sqrt{3}=7+4\sqrt{3}-x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
\sqrt{3}b=-x+4\sqrt{3}+7
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\sqrt{3}b}{\sqrt{3}}=\frac{-x+4\sqrt{3}+7}{\sqrt{3}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \sqrt{3} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
b=\frac{-x+4\sqrt{3}+7}{\sqrt{3}}
\sqrt{3} ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ \sqrt{3} ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
b=\frac{\sqrt{3}\left(-x+4\sqrt{3}+7\right)}{3}
7+4\sqrt{3}-x ਨੂੰ \sqrt{3} ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}