ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
y ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4y^{2}-13y+36=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
y=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 4\times 36}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, -13 ਨੂੰ b ਲਈ, ਅਤੇ 36 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
y=\frac{-\left(-13\right)±\sqrt{169-4\times 4\times 36}}{2\times 4}
-13 ਦਾ ਵਰਗ ਕਰੋ।
y=\frac{-\left(-13\right)±\sqrt{169-16\times 36}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-\left(-13\right)±\sqrt{169-576}}{2\times 4}
-16 ਨੂੰ 36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-\left(-13\right)±\sqrt{-407}}{2\times 4}
169 ਨੂੰ -576 ਵਿੱਚ ਜੋੜੋ।
y=\frac{-\left(-13\right)±\sqrt{407}i}{2\times 4}
-407 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y=\frac{13±\sqrt{407}i}{2\times 4}
-13 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 13 ਹੈ।
y=\frac{13±\sqrt{407}i}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{13+\sqrt{407}i}{8}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{13±\sqrt{407}i}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 13 ਨੂੰ i\sqrt{407} ਵਿੱਚ ਜੋੜੋ।
y=\frac{-\sqrt{407}i+13}{8}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{13±\sqrt{407}i}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 13 ਵਿੱਚੋਂ i\sqrt{407} ਨੂੰ ਘਟਾਓ।
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
4y^{2}-13y+36=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
4y^{2}-13y+36-36=-36
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 36 ਨੂੰ ਘਟਾਓ।
4y^{2}-13y=-36
36 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{4y^{2}-13y}{4}=-\frac{36}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y^{2}-\frac{13}{4}y=-\frac{36}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y^{2}-\frac{13}{4}y=-9
-36 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y^{2}-\frac{13}{4}y+\left(-\frac{13}{8}\right)^{2}=-9+\left(-\frac{13}{8}\right)^{2}
-\frac{13}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{13}{8} ਨਿਕਲੇ। ਫੇਰ, -\frac{13}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
y^{2}-\frac{13}{4}y+\frac{169}{64}=-9+\frac{169}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{13}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
y^{2}-\frac{13}{4}y+\frac{169}{64}=-\frac{407}{64}
-9 ਨੂੰ \frac{169}{64} ਵਿੱਚ ਜੋੜੋ।
\left(y-\frac{13}{8}\right)^{2}=-\frac{407}{64}
ਫੈਕਟਰ y^{2}-\frac{13}{4}y+\frac{169}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(y-\frac{13}{8}\right)^{2}}=\sqrt{-\frac{407}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y-\frac{13}{8}=\frac{\sqrt{407}i}{8} y-\frac{13}{8}=-\frac{\sqrt{407}i}{8}
ਸਪਸ਼ਟ ਕਰੋ।
y=\frac{13+\sqrt{407}i}{8} y=\frac{-\sqrt{407}i+13}{8}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{13}{8} ਨੂੰ ਜੋੜੋ।