y ਲਈ ਹਲ ਕਰੋ
y=\frac{\sqrt{410}}{2}-3\approx 7.124228366
y=-\frac{\sqrt{410}}{2}-3\approx -13.124228366
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
4y^{2}+24y-374=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
y=\frac{-24±\sqrt{24^{2}-4\times 4\left(-374\right)}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, 24 ਨੂੰ b ਲਈ, ਅਤੇ -374 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
y=\frac{-24±\sqrt{576-4\times 4\left(-374\right)}}{2\times 4}
24 ਦਾ ਵਰਗ ਕਰੋ।
y=\frac{-24±\sqrt{576-16\left(-374\right)}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-24±\sqrt{576+5984}}{2\times 4}
-16 ਨੂੰ -374 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-24±\sqrt{6560}}{2\times 4}
576 ਨੂੰ 5984 ਵਿੱਚ ਜੋੜੋ।
y=\frac{-24±4\sqrt{410}}{2\times 4}
6560 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y=\frac{-24±4\sqrt{410}}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{4\sqrt{410}-24}{8}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{-24±4\sqrt{410}}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -24 ਨੂੰ 4\sqrt{410} ਵਿੱਚ ਜੋੜੋ।
y=\frac{\sqrt{410}}{2}-3
-24+4\sqrt{410} ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{-4\sqrt{410}-24}{8}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{-24±4\sqrt{410}}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -24 ਵਿੱਚੋਂ 4\sqrt{410} ਨੂੰ ਘਟਾਓ।
y=-\frac{\sqrt{410}}{2}-3
-24-4\sqrt{410} ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
4y^{2}+24y-374=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
4y^{2}+24y-374-\left(-374\right)=-\left(-374\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 374 ਨੂੰ ਜੋੜੋ।
4y^{2}+24y=-\left(-374\right)
-374 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
4y^{2}+24y=374
0 ਵਿੱਚੋਂ -374 ਨੂੰ ਘਟਾਓ।
\frac{4y^{2}+24y}{4}=\frac{374}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y^{2}+\frac{24}{4}y=\frac{374}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
y^{2}+6y=\frac{374}{4}
24 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y^{2}+6y=\frac{187}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{374}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
y^{2}+6y+3^{2}=\frac{187}{2}+3^{2}
6, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3 ਨਿਕਲੇ। ਫੇਰ, 3 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
y^{2}+6y+9=\frac{187}{2}+9
3 ਦਾ ਵਰਗ ਕਰੋ।
y^{2}+6y+9=\frac{205}{2}
\frac{187}{2} ਨੂੰ 9 ਵਿੱਚ ਜੋੜੋ।
\left(y+3\right)^{2}=\frac{205}{2}
ਫੈਕਟਰ y^{2}+6y+9। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(y+3\right)^{2}}=\sqrt{\frac{205}{2}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y+3=\frac{\sqrt{410}}{2} y+3=-\frac{\sqrt{410}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
y=\frac{\sqrt{410}}{2}-3 y=-\frac{\sqrt{410}}{2}-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}