k ਲਈ ਹਲ ਕਰੋ
k=\frac{4x}{3}+\frac{1}{3x}
x\neq 0
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{\sqrt{9k^{2}-16}+3k}{8}
x=\frac{-\sqrt{9k^{2}-16}+3k}{8}
x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{9k^{2}-16}+3k}{8}
x=\frac{-\sqrt{9k^{2}-16}+3k}{8}\text{, }|k|\geq \frac{4}{3}
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
-3kx+1=-4x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 4x^{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-3kx=-4x^{2}-1
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 1 ਨੂੰ ਘਟਾ ਦਿਓ।
\left(-3x\right)k=-4x^{2}-1
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(-3x\right)k}{-3x}=\frac{-4x^{2}-1}{-3x}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -3x ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=\frac{-4x^{2}-1}{-3x}
-3x ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -3x ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
k=\frac{4x}{3}+\frac{1}{3x}
-4x^{2}-1 ਨੂੰ -3x ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}