ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

a+b=11 ab=4\left(-20\right)=-80
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 4x^{2}+ax+bx-20 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,80 -2,40 -4,20 -5,16 -8,10
ਕਿਉਂਕਿ ab ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੇ ਵਿਪਰੀਤ ਚਿੰਨ੍ਹ ਹੁੰਦੇ ਹਨ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, ਪਾਜ਼ੇਟਿਵ ਨੰਬਰ ਦੀ ਨੈਗੇਟਿਵ ਨਾਲੋਂ ਵੱਡੀ ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਹੁੰਦੀ ਹੈ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ -80 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1+80=79 -2+40=38 -4+20=16 -5+16=11 -8+10=2
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-5 b=16
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 11 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(4x^{2}-5x\right)+\left(16x-20\right)
4x^{2}+11x-20 ਨੂੰ \left(4x^{2}-5x\right)+\left(16x-20\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(4x-5\right)+4\left(4x-5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(4x-5\right)\left(x+4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 4x-5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=\frac{5}{4} x=-4
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 4x-5=0 ਅਤੇ x+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
4x^{2}+11x-20=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-11±\sqrt{11^{2}-4\times 4\left(-20\right)}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, 11 ਨੂੰ b ਲਈ, ਅਤੇ -20 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-11±\sqrt{121-4\times 4\left(-20\right)}}{2\times 4}
11 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-11±\sqrt{121-16\left(-20\right)}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-11±\sqrt{121+320}}{2\times 4}
-16 ਨੂੰ -20 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-11±\sqrt{441}}{2\times 4}
121 ਨੂੰ 320 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-11±21}{2\times 4}
441 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-11±21}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{10}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-11±21}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -11 ਨੂੰ 21 ਵਿੱਚ ਜੋੜੋ।
x=\frac{5}{4}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{10}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{32}{8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-11±21}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -11 ਵਿੱਚੋਂ 21 ਨੂੰ ਘਟਾਓ।
x=-4
-32 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{5}{4} x=-4
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
4x^{2}+11x-20=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
4x^{2}+11x-20-\left(-20\right)=-\left(-20\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 20 ਨੂੰ ਜੋੜੋ।
4x^{2}+11x=-\left(-20\right)
-20 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
4x^{2}+11x=20
0 ਵਿੱਚੋਂ -20 ਨੂੰ ਘਟਾਓ।
\frac{4x^{2}+11x}{4}=\frac{20}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{11}{4}x=\frac{20}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{11}{4}x=5
20 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+\frac{11}{4}x+\left(\frac{11}{8}\right)^{2}=5+\left(\frac{11}{8}\right)^{2}
\frac{11}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{11}{8} ਨਿਕਲੇ। ਫੇਰ, \frac{11}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{11}{4}x+\frac{121}{64}=5+\frac{121}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{11}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{11}{4}x+\frac{121}{64}=\frac{441}{64}
5 ਨੂੰ \frac{121}{64} ਵਿੱਚ ਜੋੜੋ।
\left(x+\frac{11}{8}\right)^{2}=\frac{441}{64}
ਫੈਕਟਰ x^{2}+\frac{11}{4}x+\frac{121}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{11}{8}\right)^{2}}=\sqrt{\frac{441}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{11}{8}=\frac{21}{8} x+\frac{11}{8}=-\frac{21}{8}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{5}{4} x=-4
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{11}{8} ਨੂੰ ਘਟਾਓ।