ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4x^{2}+9+12x=0
\sqrt[3]{729} ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}+12x+9=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=12 ab=4\times 9=36
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 4x^{2}+ax+bx+9 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,36 2,18 3,12 4,9 6,6
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 36 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+36=37 2+18=20 3+12=15 4+9=13 6+6=12
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=6 b=6
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 12 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(4x^{2}+6x\right)+\left(6x+9\right)
4x^{2}+12x+9 ਨੂੰ \left(4x^{2}+6x\right)+\left(6x+9\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2x\left(2x+3\right)+3\left(2x+3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(2x+3\right)\left(2x+3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 2x+3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(2x+3\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
x=-\frac{3}{2}
ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕੱਢਣ ਲਈ, 2x+3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
4x^{2}+9+12x=0
\sqrt[3]{729} ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}+12x+9=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-12±\sqrt{12^{2}-4\times 4\times 9}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, 12 ਨੂੰ b ਲਈ, ਅਤੇ 9 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-12±\sqrt{144-4\times 4\times 9}}{2\times 4}
12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-12±\sqrt{144-16\times 9}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{144-144}}{2\times 4}
-16 ਨੂੰ 9 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{0}}{2\times 4}
144 ਨੂੰ -144 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{12}{2\times 4}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=-\frac{12}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{3}{2}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-12}{8} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
4x^{2}+9+12x=0
\sqrt[3]{729} ਦਾ ਹਿਸਾਬ ਲਗਾਓ ਅਤੇ 9 ਪ੍ਰਾਪਤ ਕਰੋ।
4x^{2}+12x=-9
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9 ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
\frac{4x^{2}+12x}{4}=-\frac{9}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{12}{4}x=-\frac{9}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+3x=-\frac{9}{4}
12 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=-\frac{9}{4}+\left(\frac{3}{2}\right)^{2}
3, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{3}{2} ਨਿਕਲੇ। ਫੇਰ, \frac{3}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+3x+\frac{9}{4}=\frac{-9+9}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{3}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+3x+\frac{9}{4}=0
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{9}{4} ਨੂੰ \frac{9}{4} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{3}{2}\right)^{2}=0
ਫੈਕਟਰ x^{2}+3x+\frac{9}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{0}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{3}{2}=0 x+\frac{3}{2}=0
ਸਪਸ਼ਟ ਕਰੋ।
x=-\frac{3}{2} x=-\frac{3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{3}{2} ਨੂੰ ਘਟਾਓ।
x=-\frac{3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ। ਹੱਲ ਸਮਾਨ ਹਨ।