ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
w ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

16w^{2}+4w=80
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
16w^{2}+4w-80=80-80
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 80 ਨੂੰ ਘਟਾਓ।
16w^{2}+4w-80=0
80 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
w=\frac{-4±\sqrt{4^{2}-4\times 16\left(-80\right)}}{2\times 16}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 16 ਨੂੰ a ਲਈ, 4 ਨੂੰ b ਲਈ, ਅਤੇ -80 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
w=\frac{-4±\sqrt{16-4\times 16\left(-80\right)}}{2\times 16}
4 ਦਾ ਵਰਗ ਕਰੋ।
w=\frac{-4±\sqrt{16-64\left(-80\right)}}{2\times 16}
-4 ਨੂੰ 16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{-4±\sqrt{16+5120}}{2\times 16}
-64 ਨੂੰ -80 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{-4±\sqrt{5136}}{2\times 16}
16 ਨੂੰ 5120 ਵਿੱਚ ਜੋੜੋ।
w=\frac{-4±4\sqrt{321}}{2\times 16}
5136 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
w=\frac{-4±4\sqrt{321}}{32}
2 ਨੂੰ 16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{4\sqrt{321}-4}{32}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{-4±4\sqrt{321}}{32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -4 ਨੂੰ 4\sqrt{321} ਵਿੱਚ ਜੋੜੋ।
w=\frac{\sqrt{321}-1}{8}
-4+4\sqrt{321} ਨੂੰ 32 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w=\frac{-4\sqrt{321}-4}{32}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{-4±4\sqrt{321}}{32} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -4 ਵਿੱਚੋਂ 4\sqrt{321} ਨੂੰ ਘਟਾਓ।
w=\frac{-\sqrt{321}-1}{8}
-4-4\sqrt{321} ਨੂੰ 32 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w=\frac{\sqrt{321}-1}{8} w=\frac{-\sqrt{321}-1}{8}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
16w^{2}+4w=80
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{16w^{2}+4w}{16}=\frac{80}{16}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 16 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
w^{2}+\frac{4}{16}w=\frac{80}{16}
16 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 16 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
w^{2}+\frac{1}{4}w=\frac{80}{16}
4 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{4}{16} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
w^{2}+\frac{1}{4}w=5
80 ਨੂੰ 16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w^{2}+\frac{1}{4}w+\left(\frac{1}{8}\right)^{2}=5+\left(\frac{1}{8}\right)^{2}
\frac{1}{4}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{8} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{8} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
w^{2}+\frac{1}{4}w+\frac{1}{64}=5+\frac{1}{64}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{8} ਦਾ ਵਰਗ ਕੱਢੋ।
w^{2}+\frac{1}{4}w+\frac{1}{64}=\frac{321}{64}
5 ਨੂੰ \frac{1}{64} ਵਿੱਚ ਜੋੜੋ।
\left(w+\frac{1}{8}\right)^{2}=\frac{321}{64}
ਫੈਕਟਰ w^{2}+\frac{1}{4}w+\frac{1}{64}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(w+\frac{1}{8}\right)^{2}}=\sqrt{\frac{321}{64}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
w+\frac{1}{8}=\frac{\sqrt{321}}{8} w+\frac{1}{8}=-\frac{\sqrt{321}}{8}
ਸਪਸ਼ਟ ਕਰੋ।
w=\frac{\sqrt{321}-1}{8} w=\frac{-\sqrt{321}-1}{8}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{8} ਨੂੰ ਘਟਾਓ।