ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
m ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4m^{2}-36m+26=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
m=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 4\times 26}}{2\times 4}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 4 ਨੂੰ a ਲਈ, -36 ਨੂੰ b ਲਈ, ਅਤੇ 26 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
m=\frac{-\left(-36\right)±\sqrt{1296-4\times 4\times 26}}{2\times 4}
-36 ਦਾ ਵਰਗ ਕਰੋ।
m=\frac{-\left(-36\right)±\sqrt{1296-16\times 26}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{-\left(-36\right)±\sqrt{1296-416}}{2\times 4}
-16 ਨੂੰ 26 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{-\left(-36\right)±\sqrt{880}}{2\times 4}
1296 ਨੂੰ -416 ਵਿੱਚ ਜੋੜੋ।
m=\frac{-\left(-36\right)±4\sqrt{55}}{2\times 4}
880 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
m=\frac{36±4\sqrt{55}}{2\times 4}
-36 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 36 ਹੈ।
m=\frac{36±4\sqrt{55}}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
m=\frac{4\sqrt{55}+36}{8}
ਹੁਣ, ਸਮੀਕਰਨ m=\frac{36±4\sqrt{55}}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 36 ਨੂੰ 4\sqrt{55} ਵਿੱਚ ਜੋੜੋ।
m=\frac{\sqrt{55}+9}{2}
36+4\sqrt{55} ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
m=\frac{36-4\sqrt{55}}{8}
ਹੁਣ, ਸਮੀਕਰਨ m=\frac{36±4\sqrt{55}}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 36 ਵਿੱਚੋਂ 4\sqrt{55} ਨੂੰ ਘਟਾਓ।
m=\frac{9-\sqrt{55}}{2}
36-4\sqrt{55} ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
m=\frac{\sqrt{55}+9}{2} m=\frac{9-\sqrt{55}}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
4m^{2}-36m+26=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
4m^{2}-36m+26-26=-26
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 26 ਨੂੰ ਘਟਾਓ।
4m^{2}-36m=-26
26 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{4m^{2}-36m}{4}=-\frac{26}{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
m^{2}+\left(-\frac{36}{4}\right)m=-\frac{26}{4}
4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
m^{2}-9m=-\frac{26}{4}
-36 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
m^{2}-9m=-\frac{13}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-26}{4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
m^{2}-9m+\left(-\frac{9}{2}\right)^{2}=-\frac{13}{2}+\left(-\frac{9}{2}\right)^{2}
-9, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{9}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{9}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
m^{2}-9m+\frac{81}{4}=-\frac{13}{2}+\frac{81}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{9}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
m^{2}-9m+\frac{81}{4}=\frac{55}{4}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{13}{2} ਨੂੰ \frac{81}{4} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(m-\frac{9}{2}\right)^{2}=\frac{55}{4}
ਫੈਕਟਰ m^{2}-9m+\frac{81}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(m-\frac{9}{2}\right)^{2}}=\sqrt{\frac{55}{4}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
m-\frac{9}{2}=\frac{\sqrt{55}}{2} m-\frac{9}{2}=-\frac{\sqrt{55}}{2}
ਸਪਸ਼ਟ ਕਰੋ।
m=\frac{\sqrt{55}+9}{2} m=\frac{9-\sqrt{55}}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{9}{2} ਨੂੰ ਜੋੜੋ।