ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4\left(k^{2}-2k\right)
4 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
k\left(k-2\right)
k^{2}-2k 'ਤੇ ਵਿਚਾਰ ਕਰੋ। k ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
4k\left(k-2\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
4k^{2}-8k=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
k=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}}}{2\times 4}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
k=\frac{-\left(-8\right)±8}{2\times 4}
\left(-8\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
k=\frac{8±8}{2\times 4}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
k=\frac{8±8}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
k=\frac{16}{8}
ਹੁਣ, ਸਮੀਕਰਨ k=\frac{8±8}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 8 ਨੂੰ 8 ਵਿੱਚ ਜੋੜੋ।
k=2
16 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
k=\frac{0}{8}
ਹੁਣ, ਸਮੀਕਰਨ k=\frac{8±8}{8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 8 ਵਿੱਚੋਂ 8 ਨੂੰ ਘਟਾਓ।
k=0
0 ਨੂੰ 8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
4k^{2}-8k=4\left(k-2\right)k
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 2ਅਤੇ x_{2} ਲਈ 0 ਬਦਲ ਹੈ।