ਫੈਕਟਰ
4\left(b-2\right)^{2}
ਮੁਲਾਂਕਣ ਕਰੋ
4\left(b-2\right)^{2}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
4\left(b^{2}-4b+4\right)
4 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\left(b-2\right)^{2}
b^{2}-4b+4 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਸੂਤਰ ਦੀ ਵਰਤੋਂ ਕਰੋ, p^{2}-2pq+q^{2}=\left(p-q\right)^{2}, ਜਿੱਥੇ p=b ਅਤੇ q=2।
4\left(b-2\right)^{2}
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
factor(4b^{2}-16b+16)
ਇਸ ਟ੍ਰਾਈਨੋਮਿਅਲ ਕੋਲ, ਸ਼ਾਇਦ ਕੋਮਨ ਫੈਕਟਰ ਦੁਆਰਾ ਗੁਣਾ ਕੀਤਾ ਗਿਆ, ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦਾ ਰੂਪ ਹੁੰਦਾ ਹੈ। ਲੀਡਿੰਗ ਅਤੇ ਟ੍ਰੇਲਿੰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਮੂਲ ਨੂੰ ਕੱਢ ਕੇ ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦਾ ਫੈਕਟਰ ਕੱਢਿਆ ਜਾ ਸਕਦਾ ਹੈ।
gcf(4,-16,16)=4
ਕੌਫੀਸ਼ਿਏਂਟਾਂ ਦਾ ਸਭ ਤੋਂ ਕੋਮਨ ਫੈਕਟਰ ਕੱਢੋ।
4\left(b^{2}-4b+4\right)
4 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
\sqrt{4}=2
ਟ੍ਰੇਲਿੰਗ ਟਰਮ 4 ਦਾ ਵਰਗ ਮੂਲ ਕੱਢੋ।
4\left(b-2\right)^{2}
ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਬਾਈਨੋਮਿਅਲ ਦਾ ਵਰਗ ਹੁੰਦਾ ਹੈ ਜੋ ਲੀਡਿਗ ਅਤੇ ਟ੍ਰੇਲਿੰਗ ਸੰਖਿਆਵਾਂ ਦੇ ਵਰਗ ਮੂਲਾਂ ਦਾ ਜੋੜ ਜਾਂ ਅੰਤਰ ਹੁੰਦਾ ਹੈ, ਜਿਸ ਦਾ ਚਿੰਨ੍ਹ ਟ੍ਰਾਈਨੋਮਿਅਲ ਵਰਗ ਦੀ ਵਿੱਚਕਾਰਲੀ ਸੰਖਿਆ ਦੇ ਚਿੰਨ੍ਹ ਦੁਆਰਾ ਨਿਰਧਾਰਤ ਹੁੰਦਾ ਹੈ।
4b^{2}-16b+16=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
b=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 16}}{2\times 4}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
b=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 16}}{2\times 4}
-16 ਦਾ ਵਰਗ ਕਰੋ।
b=\frac{-\left(-16\right)±\sqrt{256-16\times 16}}{2\times 4}
-4 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
b=\frac{-\left(-16\right)±\sqrt{256-256}}{2\times 4}
-16 ਨੂੰ 16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
b=\frac{-\left(-16\right)±\sqrt{0}}{2\times 4}
256 ਨੂੰ -256 ਵਿੱਚ ਜੋੜੋ।
b=\frac{-\left(-16\right)±0}{2\times 4}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
b=\frac{16±0}{2\times 4}
-16 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 16 ਹੈ।
b=\frac{16±0}{8}
2 ਨੂੰ 4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
4b^{2}-16b+16=4\left(b-2\right)\left(b-2\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 2ਅਤੇ x_{2} ਲਈ 2 ਬਦਲ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}