x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}\approx -0.901387819+0.433012702i
x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}}\approx 0.901387819-0.433012702i
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}\approx -0.901387819-0.433012702i
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}}\approx 0.901387819+0.433012702i
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
4x^{4}+4=5x^{2}
4 ਨੂੰ x^{4}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{4}+4-5x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4t^{2}-5t+4=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 4}}{2\times 4}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 4 ਨੂੰ a ਦੇ ਨਾਲ, -5 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 4 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{5±\sqrt{-39}}{8}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=\frac{5+\sqrt{39}i}{8} t=\frac{-\sqrt{39}i+5}{8}
t=\frac{5±\sqrt{-39}}{8} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}} x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਹਰ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}