ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

4x^{4}+4=5x^{2}
4 ਨੂੰ x^{4}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
4x^{4}+4-5x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
4t^{2}-5t+4=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 4\times 4}}{2\times 4}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 4 ਨੂੰ a ਦੇ ਨਾਲ, -5 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 4 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{5±\sqrt{-39}}{8}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=\frac{5+\sqrt{39}i}{8} t=\frac{-\sqrt{39}i+5}{8}
t=\frac{5±\sqrt{-39}}{8} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}} x=e^{\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{-\frac{\arctan(\frac{\sqrt{39}}{5})i}{2}} x=e^{\frac{-\arctan(\frac{\sqrt{39}}{5})i+2\pi i}{2}}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਹਰ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।