ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
4 ਨੂੰ x^{2}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
4x^{2}+4 ਨੂੰ 2x^{2}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
\left(x^{2}-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
5 ਨੂੰ x^{4}-2x^{2}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{4} ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{4}+12x^{2}+4=-10x^{2}+5
3x^{4} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8x^{4} ਅਤੇ -5x^{4} ਨੂੰ ਮਿਲਾਓ।
3x^{4}+12x^{2}+4+10x^{2}=5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x^{2} ਜੋੜੋ।
3x^{4}+22x^{2}+4=5
22x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x^{2} ਅਤੇ 10x^{2} ਨੂੰ ਮਿਲਾਓ।
3x^{4}+22x^{2}+4-5=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{4}+22x^{2}-1=0
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
3t^{2}+22t-1=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 3 ਨੂੰ a ਦੇ ਨਾਲ, 22 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -1 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-22±4\sqrt{31}}{6}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
t=\frac{-22±4\sqrt{31}}{6} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=-\sqrt{\frac{2\sqrt{31}-11}{3}} x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-i\sqrt{\frac{2\sqrt{31}+11}{3}} x=i\sqrt{\frac{2\sqrt{31}+11}{3}}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਹਰ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।
\left(4x^{2}+4\right)\left(2x^{2}+1\right)=5\left(x^{2}-1\right)^{2}
4 ਨੂੰ x^{2}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{4}+12x^{2}+4=5\left(x^{2}-1\right)^{2}
4x^{2}+4 ਨੂੰ 2x^{2}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
8x^{4}+12x^{2}+4=5\left(\left(x^{2}\right)^{2}-2x^{2}+1\right)
\left(x^{2}-1\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
8x^{4}+12x^{2}+4=5\left(x^{4}-2x^{2}+1\right)
ਕਿਸੇ ਹੋਰ ਨੰਬਰ ਦੀ ਪਾਵਰ ਨੂੰ ਵਧਾਉਣ ਲਈ, ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
8x^{4}+12x^{2}+4=5x^{4}-10x^{2}+5
5 ਨੂੰ x^{4}-2x^{2}+1 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
8x^{4}+12x^{2}+4-5x^{4}=-10x^{2}+5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x^{4} ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{4}+12x^{2}+4=-10x^{2}+5
3x^{4} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 8x^{4} ਅਤੇ -5x^{4} ਨੂੰ ਮਿਲਾਓ।
3x^{4}+12x^{2}+4+10x^{2}=5
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x^{2} ਜੋੜੋ।
3x^{4}+22x^{2}+4=5
22x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 12x^{2} ਅਤੇ 10x^{2} ਨੂੰ ਮਿਲਾਓ।
3x^{4}+22x^{2}+4-5=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
3x^{4}+22x^{2}-1=0
-1 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਵਿੱਚੋਂ 5 ਨੂੰ ਘਟਾ ਦਿਓ।
3t^{2}+22t-1=0
t ਨੂੰ x^{2} ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-22±\sqrt{22^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 3 ਨੂੰ a ਦੇ ਨਾਲ, 22 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -1 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
t=\frac{-22±4\sqrt{31}}{6}
ਗਣਨਾਵਾਂ ਕਰੋ।
t=\frac{2\sqrt{31}-11}{3} t=\frac{-2\sqrt{31}-11}{3}
t=\frac{-22±4\sqrt{31}}{6} ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=\sqrt{\frac{2\sqrt{31}-11}{3}} x=-\sqrt{\frac{2\sqrt{31}-11}{3}}
ਕਿਉਂਕਿ x=t^{2} ਹੈ, ਪਾਜ਼ੇਟਿਵ t ਲਈ x=±\sqrt{t} ਦਾ ਮੁਲਾਂਕਣ ਕਰਕੇ ਹੱਲ ਪ੍ਰਾਪਤ ਹੁੰਦੇ ਹਨ।