ਮੁਲਾਂਕਣ ਕਰੋ
30u
ਅੰਤਰ ਦੱਸੋ w.r.t. u
30
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
4\times \frac{\sqrt{15}}{\sqrt{8}}u\times \frac{1}{5}\sqrt{750}
\sqrt{\frac{15}{8}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{15}}{\sqrt{8}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
4\times \frac{\sqrt{15}}{2\sqrt{2}}u\times \frac{1}{5}\sqrt{750}
8=2^{2}\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2^{2}\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2^{2}}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 2^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
4\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}u\times \frac{1}{5}\sqrt{750}
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{15}}{2\sqrt{2}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
4\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}u\times \frac{1}{5}\sqrt{750}
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
4\times \frac{\sqrt{30}}{2\times 2}u\times \frac{1}{5}\sqrt{750}
\sqrt{15} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰਕੇ, ਨੰਬਰਾਂ ਨੂੰ ਸਕ੍ਵੇਅਰ ਰੂਟ ਹੇਠਾਂ ਗੁਣਾ ਕਰੋ।
4\times \frac{\sqrt{30}}{4}u\times \frac{1}{5}\sqrt{750}
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{4}{5}\times \frac{\sqrt{30}}{4}u\sqrt{750}
\frac{4}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ \frac{1}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{4}{5}\times \frac{\sqrt{30}}{4}u\times 5\sqrt{30}
750=5^{2}\times 30 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{5^{2}\times 30} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{5^{2}}\sqrt{30} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 5^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
4\times \frac{\sqrt{30}}{4}u\sqrt{30}
5 ਅਤੇ 5 ਨੂੰ ਰੱਦ ਕਰੋ।
\sqrt{30}u\sqrt{30}
4 ਅਤੇ 4 ਨੂੰ ਰੱਦ ਕਰੋ।
30u
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{30} ਅਤੇ \sqrt{30} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}}{\sqrt{8}}u\times \frac{1}{5}\sqrt{750})
\sqrt{\frac{15}{8}} ਤਕਸੀਮ ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \frac{\sqrt{15}}{\sqrt{8}} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੀ ਤਕਸੀਮ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}}{2\sqrt{2}}u\times \frac{1}{5}\sqrt{750})
8=2^{2}\times 2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{2^{2}\times 2} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{2^{2}}\sqrt{2} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 2^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}u\times \frac{1}{5}\sqrt{750})
ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ \sqrt{2} ਦੇ ਨਾਲ ਗੁਣਾ ਕਰਕੇ \frac{\sqrt{15}}{2\sqrt{2}} ਦੇ ਡੀਨੋਮਿਨੇਟਰ ਨੂੰ ਰੈਸ਼ਨਲਾਈਜ਼ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{15}\sqrt{2}}{2\times 2}u\times \frac{1}{5}\sqrt{750})
\sqrt{2} ਦਾ ਸਕ੍ਵੇਅਰ 2 ਹੈ।
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{2\times 2}u\times \frac{1}{5}\sqrt{750})
\sqrt{15} ਅਤੇ \sqrt{2} ਨੂੰ ਗੁਣਾ ਕਰਕੇ, ਨੰਬਰਾਂ ਨੂੰ ਸਕ੍ਵੇਅਰ ਰੂਟ ਹੇਠਾਂ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{4}u\times \frac{1}{5}\sqrt{750})
4 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 2 ਅਤੇ 2 ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{4}{5}\times \frac{\sqrt{30}}{4}u\sqrt{750})
\frac{4}{5} ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 4 ਅਤੇ \frac{1}{5} ਨੂੰ ਗੁਣਾ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(\frac{4}{5}\times \frac{\sqrt{30}}{4}u\times 5\sqrt{30})
750=5^{2}\times 30 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪ੍ਰੌਡਕਟ \sqrt{5^{2}\times 30} ਦੇ ਸਕ੍ਵੇਅਰ ਰੂਟ ਨੂੰ \sqrt{5^{2}}\sqrt{30} ਸਕ੍ਵੇਅਰ ਰੂਟ ਦੇ ਪ੍ਰੌਡਕਟ ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। 5^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
\frac{\mathrm{d}}{\mathrm{d}u}(4\times \frac{\sqrt{30}}{4}u\sqrt{30})
5 ਅਤੇ 5 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(\sqrt{30}u\sqrt{30})
4 ਅਤੇ 4 ਨੂੰ ਰੱਦ ਕਰੋ।
\frac{\mathrm{d}}{\mathrm{d}u}(30u)
30 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ \sqrt{30} ਅਤੇ \sqrt{30} ਨੂੰ ਗੁਣਾ ਕਰੋ।
30u^{1-1}
ax^{n} ਦਾ ਡੈਰੀਵੇਟਿਵ nax^{n-1} ਹੈ।
30u^{0}
1 ਵਿੱਚੋਂ 1 ਨੂੰ ਘਟਾਓ।
30\times 1
ਕਿਸੇ ਵੀ t ਸੰਖਿਆ ਲਈ, 0, t^{0}=1 ਨੂੰ ਛੱਡ ਕੇ।
30
ਕਿਸੇ ਸੰਖਿਆ t, t\times 1=t ਅਤੇ 1t=t ਲਈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}