x ਲਈ ਹਲ ਕਰੋ
x=2
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
\left(8-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
80-16x+x^{2}+\left(4+x\right)^{2}=88
80 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 64 ਨੂੰ ਜੋੜੋ।
80-16x+x^{2}+16+8x+x^{2}=88
\left(4+x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
96-16x+x^{2}+8x+x^{2}=88
96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 80 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
96-8x+x^{2}+x^{2}=88
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -16x ਅਤੇ 8x ਨੂੰ ਮਿਲਾਓ।
96-8x+2x^{2}=88
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
96-8x+2x^{2}-88=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 88 ਨੂੰ ਘਟਾ ਦਿਓ।
8-8x+2x^{2}=0
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 96 ਵਿੱਚੋਂ 88 ਨੂੰ ਘਟਾ ਦਿਓ।
4-4x+x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-4x+4=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=-4 ab=1\times 4=4
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ x^{2}+ax+bx+4 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-4 -2,-2
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 4 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-4=-5 -2-2=-4
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-2 b=-2
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -4 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(x^{2}-2x\right)+\left(-2x+4\right)
x^{2}-4x+4 ਨੂੰ \left(x^{2}-2x\right)+\left(-2x+4\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
x\left(x-2\right)-2\left(x-2\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -2 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(x-2\right)\left(x-2\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ x-2 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(x-2\right)^{2}
ਬਾਈਨੋਮਿਅਲ (ਦੋ-ਪਦੀ) ਵਰਗ ਦੇ ਤੌਰ ਤੇ ਦੁਬਾਰਾ-ਲਿਖੋ।
x=2
ਸਮੀਕਰਨ ਦਾ ਹੱਲ ਕੱਢਣ ਲਈ, x-2=0 ਨੂੰ ਹੱਲ ਕਰੋ।
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
\left(8-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
80-16x+x^{2}+\left(4+x\right)^{2}=88
80 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 64 ਨੂੰ ਜੋੜੋ।
80-16x+x^{2}+16+8x+x^{2}=88
\left(4+x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
96-16x+x^{2}+8x+x^{2}=88
96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 80 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
96-8x+x^{2}+x^{2}=88
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -16x ਅਤੇ 8x ਨੂੰ ਮਿਲਾਓ।
96-8x+2x^{2}=88
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
96-8x+2x^{2}-88=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 88 ਨੂੰ ਘਟਾ ਦਿਓ।
8-8x+2x^{2}=0
8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 96 ਵਿੱਚੋਂ 88 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-8x+8=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-8\right)±\sqrt{\left(-8\right)^{2}-4\times 2\times 8}}{2\times 2}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 2 ਨੂੰ a ਲਈ, -8 ਨੂੰ b ਲਈ, ਅਤੇ 8 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-8\right)±\sqrt{64-4\times 2\times 8}}{2\times 2}
-8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{64-8\times 8}}{2\times 2}
-4 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{64-64}}{2\times 2}
-8 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-8\right)±\sqrt{0}}{2\times 2}
64 ਨੂੰ -64 ਵਿੱਚ ਜੋੜੋ।
x=-\frac{-8}{2\times 2}
0 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{8}{2\times 2}
-8 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 8 ਹੈ।
x=\frac{8}{4}
2 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=2
8 ਨੂੰ 4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
16+\left(8-x\right)^{2}+\left(4+x\right)^{2}=88
4 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 16 ਪ੍ਰਾਪਤ ਕਰੋ।
16+64-16x+x^{2}+\left(4+x\right)^{2}=88
\left(8-x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
80-16x+x^{2}+\left(4+x\right)^{2}=88
80 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 16 ਅਤੇ 64 ਨੂੰ ਜੋੜੋ।
80-16x+x^{2}+16+8x+x^{2}=88
\left(4+x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
96-16x+x^{2}+8x+x^{2}=88
96 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 80 ਅਤੇ 16 ਨੂੰ ਜੋੜੋ।
96-8x+x^{2}+x^{2}=88
-8x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -16x ਅਤੇ 8x ਨੂੰ ਮਿਲਾਓ।
96-8x+2x^{2}=88
2x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ x^{2} ਅਤੇ x^{2} ਨੂੰ ਮਿਲਾਓ।
-8x+2x^{2}=88-96
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 96 ਨੂੰ ਘਟਾ ਦਿਓ।
-8x+2x^{2}=-8
-8 ਨੂੰ ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 88 ਵਿੱਚੋਂ 96 ਨੂੰ ਘਟਾ ਦਿਓ।
2x^{2}-8x=-8
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{2x^{2}-8x}{2}=-\frac{8}{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{8}{2}\right)x=-\frac{8}{2}
2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-4x=-\frac{8}{2}
-8 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x=-4
-8 ਨੂੰ 2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-4x+\left(-2\right)^{2}=-4+\left(-2\right)^{2}
-4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2 ਨਿਕਲੇ। ਫੇਰ, -2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-4x+4=-4+4
-2 ਦਾ ਵਰਗ ਕਰੋ।
x^{2}-4x+4=0
-4 ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(x-2\right)^{2}=0
ਫੈਕਟਰ x^{2}-4x+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-2\right)^{2}}=\sqrt{0}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-2=0 x-2=0
ਸਪਸ਼ਟ ਕਰੋ।
x=2 x=2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।
x=2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ। ਹੱਲ ਸਮਾਨ ਹਨ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}