ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

36x^{2}+2x-6=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-2±\sqrt{2^{2}-4\times 36\left(-6\right)}}{2\times 36}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 36 ਨੂੰ a ਲਈ, 2 ਨੂੰ b ਲਈ, ਅਤੇ -6 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-2±\sqrt{4-4\times 36\left(-6\right)}}{2\times 36}
2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-2±\sqrt{4-144\left(-6\right)}}{2\times 36}
-4 ਨੂੰ 36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{4+864}}{2\times 36}
-144 ਨੂੰ -6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{868}}{2\times 36}
4 ਨੂੰ 864 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-2±2\sqrt{217}}{2\times 36}
868 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-2±2\sqrt{217}}{72}
2 ਨੂੰ 36 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{2\sqrt{217}-2}{72}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±2\sqrt{217}}{72} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -2 ਨੂੰ 2\sqrt{217} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{217}-1}{36}
-2+2\sqrt{217} ਨੂੰ 72 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{217}-2}{72}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-2±2\sqrt{217}}{72} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -2 ਵਿੱਚੋਂ 2\sqrt{217} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{217}-1}{36}
-2-2\sqrt{217} ਨੂੰ 72 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{217}-1}{36} x=\frac{-\sqrt{217}-1}{36}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
36x^{2}+2x-6=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
36x^{2}+2x-6-\left(-6\right)=-\left(-6\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 6 ਨੂੰ ਜੋੜੋ।
36x^{2}+2x=-\left(-6\right)
-6 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
36x^{2}+2x=6
0 ਵਿੱਚੋਂ -6 ਨੂੰ ਘਟਾਓ।
\frac{36x^{2}+2x}{36}=\frac{6}{36}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 36 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{2}{36}x=\frac{6}{36}
36 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 36 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{18}x=\frac{6}{36}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{2}{36} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{18}x=\frac{1}{6}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{6}{36} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}+\frac{1}{18}x+\left(\frac{1}{36}\right)^{2}=\frac{1}{6}+\left(\frac{1}{36}\right)^{2}
\frac{1}{18}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{1}{36} ਨਿਕਲੇ। ਫੇਰ, \frac{1}{36} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{1}{18}x+\frac{1}{1296}=\frac{1}{6}+\frac{1}{1296}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{1}{36} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{1}{18}x+\frac{1}{1296}=\frac{217}{1296}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{6} ਨੂੰ \frac{1}{1296} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{1}{36}\right)^{2}=\frac{217}{1296}
ਫੈਕਟਰ x^{2}+\frac{1}{18}x+\frac{1}{1296}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{1}{36}\right)^{2}}=\sqrt{\frac{217}{1296}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{1}{36}=\frac{\sqrt{217}}{36} x+\frac{1}{36}=-\frac{\sqrt{217}}{36}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{217}-1}{36} x=\frac{-\sqrt{217}-1}{36}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{1}{36} ਨੂੰ ਘਟਾਓ।