ਫੈਕਟਰ
\left(2a-3b\right)\left(3a-2b\right)\left(2a+3b\right)\left(3a+2b\right)
ਮੁਲਾਂਕਣ ਕਰੋ
36a^{4}+36b^{4}-97\left(ab\right)^{2}
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
36a^{4}-97b^{2}a^{2}+36b^{4}
36a^{4}-97a^{2}b^{2}+36b^{4} ਨੂੰ a ਵੇਰੀਏਬਲ ਦੇ ਉੱਤੇ ਪੋਲੀਨੋਮਿਅਨ ਵਜੋਂ ਮੰਨੋ।
\left(4a^{2}-9b^{2}\right)\left(9a^{2}-4b^{2}\right)
ka^{m}+n ਰੂਪ ਵਿੱਚ ਇੱਕ ਫੈਕਟਰ ਲੱਭੋ, ਜਿੱਥੇ ka^{m} ਉੱਚਤਮ ਪਾਵਰ 36a^{4} ਵਾਲੇ ਇੱਕ ਮੋਨੋਮਿਅਲ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ ਅਤੇ n ਸਥਿਰ ਫੈਕਟਰ 36b^{4} ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ। ਅਜਿਹਾ ਇੱਕ ਫੈਕਟਰ 4a^{2}-9b^{2} ਹੈ। ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਇਸ ਫੈਕਟਰ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਇਸਦੇ ਫੈਕਟਰ ਬਣਾਓ।
\left(2a-3b\right)\left(2a+3b\right)
4a^{2}-9b^{2} 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 4a^{2}-9b^{2} ਨੂੰ \left(2a\right)^{2}-\left(3b\right)^{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right)।
\left(3a-2b\right)\left(3a+2b\right)
9a^{2}-4b^{2} 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 9a^{2}-4b^{2} ਨੂੰ \left(3a\right)^{2}-\left(2b\right)^{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: p^{2}-q^{2}=\left(p-q\right)\left(p+q\right)।
\left(2a-3b\right)\left(2a+3b\right)\left(3a-2b\right)\left(3a+2b\right)
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}