x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{27}{A^{2}+9}
A\neq -3i\text{ and }A\neq 3i
x ਲਈ ਹਲ ਕਰੋ
x=\frac{27}{A^{2}+9}
A ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
A=-3\sqrt{-1+\frac{3}{x}}
A=3\sqrt{-1+\frac{3}{x}}\text{, }x\neq 0
A ਲਈ ਹਲ ਕਰੋ
A=3\sqrt{-1+\frac{3}{x}}
A=-3\sqrt{-1+\frac{3}{x}}\text{, }x>0\text{ and }x\leq 3
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3x\left(A-3i\right)\left(A+3i\right)-AA^{3}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ \left(A-3i\right)\left(A+3i\right) ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x\left(A-3i\right)\left(A+3i\right)-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
\left(3xA-9ix\right)\left(A+3i\right)-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
3x ਨੂੰ A-3i ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3xA^{2}+27x-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
3xA-9ix ਨੂੰ A+3i ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3xA^{2}+27x-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
A-3i ਨੂੰ A+3i ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{2}\left(A-3i\right)\left(A+3i\right)
A^{2}+9 ਨੂੰ 9 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3xA^{2}+27x-A^{4}=9A^{2}+81+\left(-A^{3}+3iA^{2}\right)\left(A+3i\right)
-A^{2} ਨੂੰ A-3i ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{4}-9A^{2}
-A^{3}+3iA^{2} ਨੂੰ A+3i ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ ਕਰੋ ਅਤੇ ਸਮਾਨ ਸ਼ਬਦਾਂ ਨੂੰ ਇਕੱਠੇ ਕਰੋ।
3xA^{2}+27x-A^{4}=81-A^{4}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9A^{2} ਅਤੇ -9A^{2} ਨੂੰ ਮਿਲਾਓ।
3xA^{2}+27x=81-A^{4}+A^{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ A^{4} ਜੋੜੋ।
3xA^{2}+27x=81
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -A^{4} ਅਤੇ A^{4} ਨੂੰ ਮਿਲਾਓ।
\left(3A^{2}+27\right)x=81
x ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81}{3A^{2}+27}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3A^{2}+27 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{81}{3A^{2}+27}
3A^{2}+27 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3A^{2}+27 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{27}{A^{2}+9}
81 ਨੂੰ 3A^{2}+27 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
3x\left(A^{2}+9\right)-AA^{3}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ A^{2}+9 ਦੇ ਨਾਲ ਗੁਣਾ ਕਰੋ।
3x\left(A^{2}+9\right)-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
ਸਮਾਨ ਬੇਸ ਦੀਆਂ ਪਾਵਰਾਂ ਨੂੰ ਗੁਣਾ ਕਰਨ ਲਈ, ਉਹਨਾਂ ਦੇ ਐਕਸਪੋਨੈਂਟਾਂ ਨੂੰ ਜੋੜੋ। 4 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 1 ਅਤੇ 3 ਨੂੰ ਜੋੜੋ।
3xA^{2}+27x-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
3x ਨੂੰ A^{2}+9 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{2}\left(A^{2}+9\right)
A^{2}+9 ਨੂੰ 9 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{4}-9A^{2}
-A^{2} ਨੂੰ A^{2}+9 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3xA^{2}+27x-A^{4}=81-A^{4}
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 9A^{2} ਅਤੇ -9A^{2} ਨੂੰ ਮਿਲਾਓ।
3xA^{2}+27x=81-A^{4}+A^{4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ A^{4} ਜੋੜੋ।
3xA^{2}+27x=81
0 ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -A^{4} ਅਤੇ A^{4} ਨੂੰ ਮਿਲਾਓ।
\left(3A^{2}+27\right)x=81
x ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81}{3A^{2}+27}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3A^{2}+27 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x=\frac{81}{3A^{2}+27}
3A^{2}+27 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3A^{2}+27 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x=\frac{27}{A^{2}+9}
81 ਨੂੰ 3A^{2}+27 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}