ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3x-15=2x^{2}-10x
2x ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x-15-2x^{2}=-10x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
3x-15-2x^{2}+10x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x ਜੋੜੋ।
13x-15-2x^{2}=0
13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+13x-15=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=13 ab=-2\left(-15\right)=30
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -2x^{2}+ax+bx-15 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,30 2,15 3,10 5,6
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 30 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+30=31 2+15=17 3+10=13 5+6=11
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=10 b=3
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 13 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-2x^{2}+10x\right)+\left(3x-15\right)
-2x^{2}+13x-15 ਨੂੰ \left(-2x^{2}+10x\right)+\left(3x-15\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
2x\left(-x+5\right)-3\left(-x+5\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 2x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-x+5\right)\left(2x-3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -x+5 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=5 x=\frac{3}{2}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -x+5=0 ਅਤੇ 2x-3=0 ਨੂੰ ਹੱਲ ਕਰੋ।
3x-15=2x^{2}-10x
2x ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x-15-2x^{2}=-10x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
3x-15-2x^{2}+10x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x ਜੋੜੋ।
13x-15-2x^{2}=0
13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
-2x^{2}+13x-15=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-13±\sqrt{13^{2}-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -2 ਨੂੰ a ਲਈ, 13 ਨੂੰ b ਲਈ, ਅਤੇ -15 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-13±\sqrt{169-4\left(-2\right)\left(-15\right)}}{2\left(-2\right)}
13 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-13±\sqrt{169+8\left(-15\right)}}{2\left(-2\right)}
-4 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-13±\sqrt{169-120}}{2\left(-2\right)}
8 ਨੂੰ -15 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-13±\sqrt{49}}{2\left(-2\right)}
169 ਨੂੰ -120 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-13±7}{2\left(-2\right)}
49 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-13±7}{-4}
2 ਨੂੰ -2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=-\frac{6}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-13±7}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -13 ਨੂੰ 7 ਵਿੱਚ ਜੋੜੋ।
x=\frac{3}{2}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-6}{-4} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=-\frac{20}{-4}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-13±7}{-4} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -13 ਵਿੱਚੋਂ 7 ਨੂੰ ਘਟਾਓ।
x=5
-20 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3}{2} x=5
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
3x-15=2x^{2}-10x
2x ਨੂੰ x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3x-15-2x^{2}=-10x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 2x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
3x-15-2x^{2}+10x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 10x ਜੋੜੋ।
13x-15-2x^{2}=0
13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 3x ਅਤੇ 10x ਨੂੰ ਮਿਲਾਓ।
13x-2x^{2}=15
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 15 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
-2x^{2}+13x=15
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
\frac{-2x^{2}+13x}{-2}=\frac{15}{-2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{13}{-2}x=\frac{15}{-2}
-2 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -2 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{2}x=\frac{15}{-2}
13 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{13}{2}x=-\frac{15}{2}
15 ਨੂੰ -2 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{13}{2}x+\left(-\frac{13}{4}\right)^{2}=-\frac{15}{2}+\left(-\frac{13}{4}\right)^{2}
-\frac{13}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{13}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{13}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{2}x+\frac{169}{16}=-\frac{15}{2}+\frac{169}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{13}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{13}{2}x+\frac{169}{16}=\frac{49}{16}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{15}{2} ਨੂੰ \frac{169}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{13}{4}\right)^{2}=\frac{49}{16}
ਫੈਕਟਰ x^{2}-\frac{13}{2}x+\frac{169}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{13}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{13}{4}=\frac{7}{4} x-\frac{13}{4}=-\frac{7}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=5 x=\frac{3}{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{13}{4} ਨੂੰ ਜੋੜੋ।