ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3x^{4}+24x^{3}+47x^{2}-8x-16
ਇੱਕ-ਸਮਾਨ ਸੰਖਿਆਵਾਂ ਨੂੰ ਗੁਣਾ ਕਰੋ ਅਤੇ ਮਿਲਾਓ।
3x^{4}+24x^{3}+47x^{2}-8x-16=0
ਅਭਿਵਿਅਕਤੀਆਂ ਦੇ ਫੈਕਟਰ ਬਣਾਉਣ ਲਈ, ਅਜਿਹੇ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਇਹ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
±\frac{16}{3},±16,±\frac{8}{3},±8,±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ -16 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=-4
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
3x^{3}+12x^{2}-x-4=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। 3x^{4}+24x^{3}+47x^{2}-8x-16 ਨੂੰ x+4 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3x^{3}+12x^{2}-x-4 ਨਿਕਲੇ। ਪਰਿਣਾਮਾਂ ਦੇ ਫੈਕਟਰ ਬਣਾਉਣ ਲਈ, ਅਜਿਹੇ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਇਹ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
±\frac{4}{3},±4,±\frac{2}{3},±2,±\frac{1}{3},±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=-4
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
3x^{2}-1=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। 3x^{3}+12x^{2}-x-4 ਨੂੰ x+4 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 3x^{2}-1 ਨਿਕਲੇ। ਪਰਿਣਾਮਾਂ ਦੇ ਫੈਕਟਰ ਬਣਾਉਣ ਲਈ, ਅਜਿਹੇ ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਇਹ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦੀ ਹੈ।
x=\frac{0±\sqrt{0^{2}-4\times 3\left(-1\right)}}{2\times 3}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 3 ਨੂੰ a ਦੇ ਨਾਲ, 0 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ -1 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{0±2\sqrt{3}}{6}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=-\frac{\sqrt{3}}{3} x=\frac{\sqrt{3}}{3}
3x^{2}-1=0 ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
\left(3x^{2}-1\right)\left(x+4\right)^{2}
ਹਾਸਲ ਕੀਤੇ ਰੂਟਸ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ। ਪੋਲੀਨੋਮਿਅਲ 3x^{2}-1 ਦੇ ਫੈਕਟਰ ਨਹੀਂ ਬਣਾਏ ਜਾਂਦੇ ਕਿਉਂਕਿ ਇਸਦੇ ਕੋਈ ਰੈਸ਼ਨਲ ਰੂਟ ਨਹੀਂ ਹਨ।
3x^{4}+24x^{3}+47x^{2}-8x-16
47x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 48x^{2} ਅਤੇ -x^{2} ਨੂੰ ਮਿਲਾਓ।