k ਲਈ ਹਲ ਕਰੋ
k=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
x\neq -\frac{3}{2}
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
x=\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x=-\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}
x=-\frac{\sqrt{4k^{2}-32k+25}}{6}-\frac{k}{3}-\frac{1}{6}\text{, }k\geq \frac{\sqrt{39}}{2}+4\text{ or }k\leq -\frac{\sqrt{39}}{2}+4
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3x^{2}+2kx+x+3k-2=0
2k+1 ਨੂੰ x ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
2kx+x+3k-2=-3x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x^{2} ਨੂੰ ਘਟਾ ਦਿਓ। ਸਿਫਰ ਵਿੱਚੋ ਘਟਾਈ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
2kx+3k-2=-3x^{2}-x
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ x ਨੂੰ ਘਟਾ ਦਿਓ।
2kx+3k=-3x^{2}-x+2
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਜੋੜੋ।
\left(2x+3\right)k=-3x^{2}-x+2
k ਵਾਲੀਆਂ ਸਾਰੀਆਂ ਸੰਖਿਆਵਾਂ ਨੂੰ ਮਿਲਾਓ।
\left(2x+3\right)k=2-x-3x^{2}
ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ।
\frac{\left(2x+3\right)k}{2x+3}=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2x+3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k=-\frac{\left(3x-2\right)\left(x+1\right)}{2x+3}
2x+3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 2x+3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}