ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

14\sqrt{x}=5-3x
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3x ਨੂੰ ਘਟਾਓ।
\left(14\sqrt{x}\right)^{2}=\left(5-3x\right)^{2}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਕਰੋ।
14^{2}\left(\sqrt{x}\right)^{2}=\left(5-3x\right)^{2}
\left(14\sqrt{x}\right)^{2} ਦਾ ਵਿਸਥਾਰ ਕਰੋ।
196\left(\sqrt{x}\right)^{2}=\left(5-3x\right)^{2}
14 ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ 196 ਪ੍ਰਾਪਤ ਕਰੋ।
196x=\left(5-3x\right)^{2}
\sqrt{x} ਨੂੰ 2 ਦੀ ਪਾਵਰ ਨਾਲ ਗਿਣੋ ਅਤੇ x ਪ੍ਰਾਪਤ ਕਰੋ।
196x=25-30x+9x^{2}
\left(5-3x\right)^{2} ਦਾ ਵਿਸਤਾਰ ਕਰ ਲਈ ਦੋਹਰੀ ਥਿਉਰਮ \left(a-b\right)^{2}=a^{2}-2ab+b^{2} ਦੀ ਵਰਤੋਂ ਕਰੋ।
196x-25=-30x+9x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 25 ਨੂੰ ਘਟਾ ਦਿਓ।
196x-25+30x=9x^{2}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 30x ਜੋੜੋ।
226x-25=9x^{2}
226x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 196x ਅਤੇ 30x ਨੂੰ ਮਿਲਾਓ।
226x-25-9x^{2}=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 9x^{2} ਨੂੰ ਘਟਾ ਦਿਓ।
-9x^{2}+226x-25=0
ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ ਵਿੱਚ ਰੱਖਣ ਲਈ ਇਸ ਨੂੰ ਦੁਬਾਰਾ-ਵਿਵਸਥਿਤ ਕਰੋ। ਸੰਖਿਆਵਾਂ ਨੂੰ ਸਭ ਤੋਂ ਵੱਡੀ ਤੋਂ ਸਭ ਤੋਂ ਛੋਟੀ ਪਾਵਰ ਦੀ ਤਰਤੀਬ ਵਿੱਚ ਲਗਾਓ।
a+b=226 ab=-9\left(-25\right)=225
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ -9x^{2}+ax+bx-25 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,225 3,75 5,45 9,25 15,15
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 225 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=225 b=1
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 226 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-9x^{2}+225x\right)+\left(x-25\right)
-9x^{2}+226x-25 ਨੂੰ \left(-9x^{2}+225x\right)+\left(x-25\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
9x\left(-x+25\right)-\left(-x+25\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 9x ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -1 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(-x+25\right)\left(9x-1\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ -x+25 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
x=25 x=\frac{1}{9}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, -x+25=0 ਅਤੇ 9x-1=0 ਨੂੰ ਹੱਲ ਕਰੋ।
3\times 25+14\sqrt{25}=5
ਸਮੀਕਰਨ 3x+14\sqrt{x}=5 ਵਿੱਚ, x ਲਈ 25 ਨੂੰ ਬਦਲ ਦਿਓ।
145=5
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=25 ਸਮੀਕਰਨ ਨੂੰ ਸਤੁੰਸ਼ਟ ਨਹੀਂ ਕਰਦਾ ਹੈ।
3\times \frac{1}{9}+14\sqrt{\frac{1}{9}}=5
ਸਮੀਕਰਨ 3x+14\sqrt{x}=5 ਵਿੱਚ, x ਲਈ \frac{1}{9} ਨੂੰ ਬਦਲ ਦਿਓ।
5=5
ਸਪਸ਼ਟ ਕਰੋ। ਮਾਨ x=\frac{1}{9} ਸਮੀਕਰਨ ਨੂੰ ਸੰਤੁਸ਼ਟ ਕਰਦਾ ਹੈ।
x=\frac{1}{9}
ਸਮੀਕਰਨ 14\sqrt{x}=5-3x ਦਾ ਇੱਕ ਅਨੋਖਾ ਹਲ ਹੈ।