x, y ਲਈ ਹਲ ਕਰੋ
x=34-\frac{280}{3x_{7}}
y=\frac{28}{x_{7}}
x_{7}\neq 0
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3x_{7}y=84,10y+3x=102
ਸਬਸੀਟਿਉਸ਼ਨ ਨੂੰ ਵਰਤ ਰਹੇ ਸਮੀਕਰਨਾਂ ਦੇ ਜੋੜੇ ਨੂੰ ਹਲ ਕਰਨ ਲਈ, ਪਹਿਲੇ ਕਿਸੇ ਇੱਕ ਵੇਰੀਏਬਲ ਲਈ ਕਿਸੇ ਇੱਕ ਸਮੀਕਰਨ ਨੂੰ ਹਲ ਕਰੋ। ਫੇਰ, ਉਸ ਵੇਰੀਏਬਲ ਲਈ ਦੂਜੇ ਸਮੀਕਰਨ ਵਿੱਚ ਨਤੀਜੇ ਨੂੰ ਬਦਲ ਦਿਓ।
3x_{7}y=84
ਦੋ ਸਮੀਕਰਨਾਂ ਵਿੱਚੋਂ ਇੱਕ ਚੁਣੋ ਜਿਸ ਨੂੰ ਬਰਾਬਰ ਦੇ ਚਿੰਨ੍ਹ ਦੇ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ y ਨੂੰ ਅਲੱਗ ਕਰਕੇ y ਲਈ ਹੱਲ ਕਰਨਾ ਜ਼ਿਆਦਾ ਆਸਾਨ ਹੈ।
y=\frac{28}{x_{7}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3x_{7} ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
10\times \frac{28}{x_{7}}+3x=102
ਦੂਜੇ ਸਮੀਕਰਨ 10y+3x=102 ਵਿੱਚ, y ਲਈ \frac{28}{x_{7}} ਨੂੰ ਬਦਲ ਦਿਓ।
\frac{280}{x_{7}}+3x=102
10 ਨੂੰ \frac{28}{x_{7}} ਵਾਰ ਗੁਣਾ ਕਰੋ।
3x=102-\frac{280}{x_{7}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{280}{x_{7}} ਨੂੰ ਘਟਾਓ।
x=34-\frac{280}{3x_{7}}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
y=\frac{28}{x_{7}},x=34-\frac{280}{3x_{7}}
ਸਿਸਟਮ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}