ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
w ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3w^{2}-12w+7=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
w=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 7}}{2\times 3}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 3 ਨੂੰ a ਲਈ, -12 ਨੂੰ b ਲਈ, ਅਤੇ 7 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
w=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 7}}{2\times 3}
-12 ਦਾ ਵਰਗ ਕਰੋ।
w=\frac{-\left(-12\right)±\sqrt{144-12\times 7}}{2\times 3}
-4 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{-\left(-12\right)±\sqrt{144-84}}{2\times 3}
-12 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{-\left(-12\right)±\sqrt{60}}{2\times 3}
144 ਨੂੰ -84 ਵਿੱਚ ਜੋੜੋ।
w=\frac{-\left(-12\right)±2\sqrt{15}}{2\times 3}
60 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
w=\frac{12±2\sqrt{15}}{2\times 3}
-12 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 12 ਹੈ।
w=\frac{12±2\sqrt{15}}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{2\sqrt{15}+12}{6}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{12±2\sqrt{15}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 12 ਨੂੰ 2\sqrt{15} ਵਿੱਚ ਜੋੜੋ।
w=\frac{\sqrt{15}}{3}+2
12+2\sqrt{15} ਨੂੰ 6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w=\frac{12-2\sqrt{15}}{6}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{12±2\sqrt{15}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 12 ਵਿੱਚੋਂ 2\sqrt{15} ਨੂੰ ਘਟਾਓ।
w=-\frac{\sqrt{15}}{3}+2
12-2\sqrt{15} ਨੂੰ 6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w=\frac{\sqrt{15}}{3}+2 w=-\frac{\sqrt{15}}{3}+2
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
3w^{2}-12w+7=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
3w^{2}-12w+7-7=-7
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7 ਨੂੰ ਘਟਾਓ।
3w^{2}-12w=-7
7 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{3w^{2}-12w}{3}=-\frac{7}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
w^{2}+\left(-\frac{12}{3}\right)w=-\frac{7}{3}
3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
w^{2}-4w=-\frac{7}{3}
-12 ਨੂੰ 3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
w^{2}-4w+\left(-2\right)^{2}=-\frac{7}{3}+\left(-2\right)^{2}
-4, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -2 ਨਿਕਲੇ। ਫੇਰ, -2 ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
w^{2}-4w+4=-\frac{7}{3}+4
-2 ਦਾ ਵਰਗ ਕਰੋ।
w^{2}-4w+4=\frac{5}{3}
-\frac{7}{3} ਨੂੰ 4 ਵਿੱਚ ਜੋੜੋ।
\left(w-2\right)^{2}=\frac{5}{3}
ਫੈਕਟਰ w^{2}-4w+4। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(w-2\right)^{2}}=\sqrt{\frac{5}{3}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
w-2=\frac{\sqrt{15}}{3} w-2=-\frac{\sqrt{15}}{3}
ਸਪਸ਼ਟ ਕਰੋ।
w=\frac{\sqrt{15}}{3}+2 w=-\frac{\sqrt{15}}{3}+2
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 2 ਨੂੰ ਜੋੜੋ।