ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3a^{2}+\left(7b+11c\right)a+2b^{2}+6c^{2}+7bc
3a^{2}+2b^{2}+6c^{2}+7ab+11ac+7bc ਨੂੰ a ਵੇਰੀਏਬਲ ਦੇ ਉੱਤੇ ਪੋਲੀਨੋਮਿਅਨ ਵਜੋਂ ਮੰਨੋ।
\left(3a+b+2c\right)\left(a+2b+3c\right)
ka^{m}+n ਰੂਪ ਵਿੱਚ ਇੱਕ ਫੈਕਟਰ ਲੱਭੋ, ਜਿੱਥੇ ka^{m} ਉੱਚਤਮ ਪਾਵਰ 3a^{2} ਵਾਲੇ ਇੱਕ ਮੋਨੋਮਿਅਲ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ ਅਤੇ n ਸਥਿਰ ਫੈਕਟਰ 2b^{2}+7bc+6c^{2} ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਦਾ ਹੈ। ਅਜਿਹਾ ਇੱਕ ਫੈਕਟਰ 3a+b+2c ਹੈ। ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ ਇਸ ਫੈਕਟਰ ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਇਸਦੇ ਫੈਕਟਰ ਬਣਾਓ।