ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

3x^{2}+8x-3=65
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
3x^{2}+8x-3-65=65-65
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 65 ਨੂੰ ਘਟਾਓ।
3x^{2}+8x-3-65=0
65 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
3x^{2}+8x-68=0
-3 ਵਿੱਚੋਂ 65 ਨੂੰ ਘਟਾਓ।
x=\frac{-8±\sqrt{8^{2}-4\times 3\left(-68\right)}}{2\times 3}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 3 ਨੂੰ a ਲਈ, 8 ਨੂੰ b ਲਈ, ਅਤੇ -68 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-8±\sqrt{64-4\times 3\left(-68\right)}}{2\times 3}
8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-8±\sqrt{64-12\left(-68\right)}}{2\times 3}
-4 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{64+816}}{2\times 3}
-12 ਨੂੰ -68 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{880}}{2\times 3}
64 ਨੂੰ 816 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-8±4\sqrt{55}}{2\times 3}
880 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-8±4\sqrt{55}}{6}
2 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{4\sqrt{55}-8}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±4\sqrt{55}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -8 ਨੂੰ 4\sqrt{55} ਵਿੱਚ ਜੋੜੋ।
x=\frac{2\sqrt{55}-4}{3}
-8+4\sqrt{55} ਨੂੰ 6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-4\sqrt{55}-8}{6}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±4\sqrt{55}}{6} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -8 ਵਿੱਚੋਂ 4\sqrt{55} ਨੂੰ ਘਟਾਓ।
x=\frac{-2\sqrt{55}-4}{3}
-8-4\sqrt{55} ਨੂੰ 6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{2\sqrt{55}-4}{3} x=\frac{-2\sqrt{55}-4}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
3x^{2}+8x-3=65
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
3x^{2}+8x-3-\left(-3\right)=65-\left(-3\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਨੂੰ ਜੋੜੋ।
3x^{2}+8x=65-\left(-3\right)
-3 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
3x^{2}+8x=68
65 ਵਿੱਚੋਂ -3 ਨੂੰ ਘਟਾਓ।
\frac{3x^{2}+8x}{3}=\frac{68}{3}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 3 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{8}{3}x=\frac{68}{3}
3 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 3 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{8}{3}x+\left(\frac{4}{3}\right)^{2}=\frac{68}{3}+\left(\frac{4}{3}\right)^{2}
\frac{8}{3}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{4}{3} ਨਿਕਲੇ। ਫੇਰ, \frac{4}{3} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{68}{3}+\frac{16}{9}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{4}{3} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{8}{3}x+\frac{16}{9}=\frac{220}{9}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{68}{3} ਨੂੰ \frac{16}{9} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{4}{3}\right)^{2}=\frac{220}{9}
ਫੈਕਟਰ x^{2}+\frac{8}{3}x+\frac{16}{9}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{4}{3}\right)^{2}}=\sqrt{\frac{220}{9}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{4}{3}=\frac{2\sqrt{55}}{3} x+\frac{4}{3}=-\frac{2\sqrt{55}}{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{2\sqrt{55}-4}{3} x=\frac{-2\sqrt{55}-4}{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{4}{3} ਨੂੰ ਘਟਾਓ।