ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

27x^{3}+162x^{2}+324x+280=0
ਏਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਫੈਲਾਓ।
±\frac{280}{27},±\frac{280}{9},±\frac{280}{3},±280,±\frac{140}{27},±\frac{140}{9},±\frac{140}{3},±140,±\frac{70}{27},±\frac{70}{9},±\frac{70}{3},±70,±\frac{56}{27},±\frac{56}{9},±\frac{56}{3},±56,±\frac{40}{27},±\frac{40}{9},±\frac{40}{3},±40,±\frac{35}{27},±\frac{35}{9},±\frac{35}{3},±35,±\frac{28}{27},±\frac{28}{9},±\frac{28}{3},±28,±\frac{20}{27},±\frac{20}{9},±\frac{20}{3},±20,±\frac{14}{27},±\frac{14}{9},±\frac{14}{3},±14,±\frac{10}{27},±\frac{10}{9},±\frac{10}{3},±10,±\frac{8}{27},±\frac{8}{9},±\frac{8}{3},±8,±\frac{7}{27},±\frac{7}{9},±\frac{7}{3},±7,±\frac{5}{27},±\frac{5}{9},±\frac{5}{3},±5,±\frac{4}{27},±\frac{4}{9},±\frac{4}{3},±4,±\frac{2}{27},±\frac{2}{9},±\frac{2}{3},±2,±\frac{1}{27},±\frac{1}{9},±\frac{1}{3},±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ 280 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 27 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=-\frac{10}{3}
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
9x^{2}+24x+28=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। 27x^{3}+162x^{2}+324x+280 ਨੂੰ 3\left(x+\frac{10}{3}\right)=3x+10 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 9x^{2}+24x+28 ਨਿਕਲੇ। ਸਮੀਕਰਨ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਪਰਿਣਾਮ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।
x=\frac{-24±\sqrt{24^{2}-4\times 9\times 28}}{2\times 9}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 9 ਨੂੰ a ਦੇ ਨਾਲ, 24 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 28 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{-24±\sqrt{-432}}{18}
ਗਣਨਾਵਾਂ ਕਰੋ।
x=\frac{-2i\sqrt{3}-4}{3} x=\frac{-4+2i\sqrt{3}}{3}
9x^{2}+24x+28=0 ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰੋ, ਜਦੋਂ ± ਪਲੱਸ ਅਤੇ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ।
x=-\frac{10}{3} x=\frac{-2i\sqrt{3}-4}{3} x=\frac{-4+2i\sqrt{3}}{3}
ਸਾਰੇ ਲੱਭੇ ਸਮਾਧਾਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ।
27x^{3}+162x^{2}+324x+280=0
ਏਕਸਪ੍ਰੈਸ਼ਨ ਨੂੰ ਫੈਲਾਓ।
±\frac{280}{27},±\frac{280}{9},±\frac{280}{3},±280,±\frac{140}{27},±\frac{140}{9},±\frac{140}{3},±140,±\frac{70}{27},±\frac{70}{9},±\frac{70}{3},±70,±\frac{56}{27},±\frac{56}{9},±\frac{56}{3},±56,±\frac{40}{27},±\frac{40}{9},±\frac{40}{3},±40,±\frac{35}{27},±\frac{35}{9},±\frac{35}{3},±35,±\frac{28}{27},±\frac{28}{9},±\frac{28}{3},±28,±\frac{20}{27},±\frac{20}{9},±\frac{20}{3},±20,±\frac{14}{27},±\frac{14}{9},±\frac{14}{3},±14,±\frac{10}{27},±\frac{10}{9},±\frac{10}{3},±10,±\frac{8}{27},±\frac{8}{9},±\frac{8}{3},±8,±\frac{7}{27},±\frac{7}{9},±\frac{7}{3},±7,±\frac{5}{27},±\frac{5}{9},±\frac{5}{3},±5,±\frac{4}{27},±\frac{4}{9},±\frac{4}{3},±4,±\frac{2}{27},±\frac{2}{9},±\frac{2}{3},±2,±\frac{1}{27},±\frac{1}{9},±\frac{1}{3},±1
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ 280 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ 27 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਸਾਰੇ ਉਮੀਦਵਾਰਾਂ \frac{p}{q} ਦੀ ਸੂਚੀ ਬਣਾਓ।
x=-\frac{10}{3}
ਐਬਸੋਲਿਉਟ ਵੈਲਯੂ ਦੁਆਰਾ ਸਭ ਤੋਂ ਛੋਟੇ ਦੇ ਨਾਲ ਸ਼ੁਰੂ ਕਰਦਿਆਂ, ਸਾਰੀਆਂ ਪੂਰਣ ਅੰਕ ਵੈਲਯੂਜ਼ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰਕੇ ਅਜਿਹਾ ਇੱਕ ਮੂਲ ਕੱਢੋ। ਜੇ ਕੋਈ ਪੂਰਣ ਅੰਕ ਮੂਲ ਨਹੀਂ ਮਿਲਦੇ ਹਨ, ਤਾਂ ਫ੍ਰੈਕਸ਼ਨਾਂ ਦੀ ਕੋਸ਼ਿਸ਼ ਕਰੋ।
9x^{2}+24x+28=0
ਫੈਕਟਰ ਥਿਓਰਮ ਦੁਆਰਾ, x-k ਹਰ ਰੂਟ k ਲਈ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਇੱਕ ਫੈਕਟਰ ਹੁੰਦਾ ਹੈ। 27x^{3}+162x^{2}+324x+280 ਨੂੰ 3\left(x+\frac{10}{3}\right)=3x+10 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ 9x^{2}+24x+28 ਨਿਕਲੇ। ਸਮੀਕਰਨ ਹੱਲ ਕਰੋ ਜਿੱਥੇ ਪਰਿਣਾਮ 0 ਦੇ ਬਰਾਬਰ ਹੁੰਦਾ ਹੈ।
x=\frac{-24±\sqrt{24^{2}-4\times 9\times 28}}{2\times 9}
ax^{2}+bx+c=0 ਫਾਰਮ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਦੋ-ਘਾਤੀ ਸੂਤਰ: \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਦੋ-ਘਾਤੀ ਸੂਤਰ ਵਿੱਚ 9 ਨੂੰ a ਦੇ ਨਾਲ, 24 ਨੂੰ b ਦੇ ਨਾਲ, ਅਤੇ 28 ਨੂੰ c ਦੇ ਨਾਲ ਬਦਲ ਦਿਓ।
x=\frac{-24±\sqrt{-432}}{18}
ਗਣਨਾਵਾਂ ਕਰੋ।
x\in \emptyset
ਕਿਉਂਕਿ ਕਿਸੇ ਨਕਾਰਾਤਮਕ ਸੰਖਿਆ ਦਾ ਵਰਗ ਮੂਲ ਅਸਲ ਫਿਲਡ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਹੈ, ਕੋਈ ਵੀ ਸਮਾਧਾਨ ਨਹੀਂ ਹਨ।
x=-\frac{10}{3}
ਸਾਰੇ ਲੱਭੇ ਸਮਾਧਾਨਾਂ ਦੀ ਸੂਚੀ ਬਣਾਓ।