x ਲਈ ਹਲ ਕਰੋ
x = \frac{\sqrt{29} + 5}{4} \approx 2.596291202
x=\frac{5-\sqrt{29}}{4}\approx -0.096291202
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
3=14x^{2}-35x-x\left(2x-5\right)
7x ਨੂੰ 2x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3=14x^{2}-35x-\left(2x^{2}-5x\right)
x ਨੂੰ 2x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3=14x^{2}-35x-2x^{2}-\left(-5x\right)
2x^{2}-5x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
3=14x^{2}-35x-2x^{2}+5x
-5x ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5x ਹੈ।
3=12x^{2}-35x+5x
12x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
3=12x^{2}-30x
-30x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -35x ਅਤੇ 5x ਨੂੰ ਮਿਲਾਓ।
12x^{2}-30x=3
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
12x^{2}-30x-3=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾ ਦਿਓ।
x=\frac{-\left(-30\right)±\sqrt{\left(-30\right)^{2}-4\times 12\left(-3\right)}}{2\times 12}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 12 ਨੂੰ a ਲਈ, -30 ਨੂੰ b ਲਈ, ਅਤੇ -3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-30\right)±\sqrt{900-4\times 12\left(-3\right)}}{2\times 12}
-30 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-30\right)±\sqrt{900-48\left(-3\right)}}{2\times 12}
-4 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-30\right)±\sqrt{900+144}}{2\times 12}
-48 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-30\right)±\sqrt{1044}}{2\times 12}
900 ਨੂੰ 144 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-\left(-30\right)±6\sqrt{29}}{2\times 12}
1044 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{30±6\sqrt{29}}{2\times 12}
-30 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 30 ਹੈ।
x=\frac{30±6\sqrt{29}}{24}
2 ਨੂੰ 12 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{6\sqrt{29}+30}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{30±6\sqrt{29}}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 30 ਨੂੰ 6\sqrt{29} ਵਿੱਚ ਜੋੜੋ।
x=\frac{\sqrt{29}+5}{4}
30+6\sqrt{29} ਨੂੰ 24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{30-6\sqrt{29}}{24}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{30±6\sqrt{29}}{24} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 30 ਵਿੱਚੋਂ 6\sqrt{29} ਨੂੰ ਘਟਾਓ।
x=\frac{5-\sqrt{29}}{4}
30-6\sqrt{29} ਨੂੰ 24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{\sqrt{29}+5}{4} x=\frac{5-\sqrt{29}}{4}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
3=14x^{2}-35x-x\left(2x-5\right)
7x ਨੂੰ 2x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3=14x^{2}-35x-\left(2x^{2}-5x\right)
x ਨੂੰ 2x-5 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
3=14x^{2}-35x-2x^{2}-\left(-5x\right)
2x^{2}-5x ਦਾ ਵਿਪਰੀਤ ਪਤਾ ਲਗਾਉਣ ਲਈ, ਹਰ ਟਰਮ ਦੇ ਵਿਪਰੀਤ ਦਾ ਪਤਾ ਲਗਾਓ।
3=14x^{2}-35x-2x^{2}+5x
-5x ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 5x ਹੈ।
3=12x^{2}-35x+5x
12x^{2} ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ 14x^{2} ਅਤੇ -2x^{2} ਨੂੰ ਮਿਲਾਓ।
3=12x^{2}-30x
-30x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -35x ਅਤੇ 5x ਨੂੰ ਮਿਲਾਓ।
12x^{2}-30x=3
ਪਾਸਿਆਂ ਨੂੰ ਸਵੈਪ ਕਰੋ ਤਾਂ ਜੋ ਸਾਰੇ ਵੇਰੀਏਬਲ ਟਰਮ ਖੱਬੇ ਪਾਸੇ ਉੱਤੇ ਹੋਣ।
\frac{12x^{2}-30x}{12}=\frac{3}{12}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 12 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\left(-\frac{30}{12}\right)x=\frac{3}{12}
12 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 12 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{5}{2}x=\frac{3}{12}
6 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-30}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{5}{2}x=\frac{1}{4}
3 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{3}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\frac{1}{4}+\left(-\frac{5}{4}\right)^{2}
-\frac{5}{2}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{5}{4} ਨਿਕਲੇ। ਫੇਰ, -\frac{5}{4} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{1}{4}+\frac{25}{16}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{5}{4} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{29}{16}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{1}{4} ਨੂੰ \frac{25}{16} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{5}{4}\right)^{2}=\frac{29}{16}
ਫੈਕਟਰ x^{2}-\frac{5}{2}x+\frac{25}{16}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{29}{16}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{5}{4}=\frac{\sqrt{29}}{4} x-\frac{5}{4}=-\frac{\sqrt{29}}{4}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{29}+5}{4} x=\frac{5-\sqrt{29}}{4}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{5}{4} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}