ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

-4x^{2}+12x+3=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-12±\sqrt{12^{2}-4\left(-4\right)\times 3}}{2\left(-4\right)}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ -4 ਨੂੰ a ਲਈ, 12 ਨੂੰ b ਲਈ, ਅਤੇ 3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-12±\sqrt{144-4\left(-4\right)\times 3}}{2\left(-4\right)}
12 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-12±\sqrt{144+16\times 3}}{2\left(-4\right)}
-4 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{144+48}}{2\left(-4\right)}
16 ਨੂੰ 3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-12±\sqrt{192}}{2\left(-4\right)}
144 ਨੂੰ 48 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-12±8\sqrt{3}}{2\left(-4\right)}
192 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-12±8\sqrt{3}}{-8}
2 ਨੂੰ -4 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{8\sqrt{3}-12}{-8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±8\sqrt{3}}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -12 ਨੂੰ 8\sqrt{3} ਵਿੱਚ ਜੋੜੋ।
x=\frac{3}{2}-\sqrt{3}
-12+8\sqrt{3} ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-8\sqrt{3}-12}{-8}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-12±8\sqrt{3}}{-8} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -12 ਵਿੱਚੋਂ 8\sqrt{3} ਨੂੰ ਘਟਾਓ।
x=\sqrt{3}+\frac{3}{2}
-12-8\sqrt{3} ਨੂੰ -8 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{3}{2}-\sqrt{3} x=\sqrt{3}+\frac{3}{2}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
-4x^{2}+12x+3=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
-4x^{2}+12x+3-3=-3
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 3 ਨੂੰ ਘਟਾਓ।
-4x^{2}+12x=-3
3 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{-4x^{2}+12x}{-4}=-\frac{3}{-4}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ -4 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{12}{-4}x=-\frac{3}{-4}
-4 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ -4 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-3x=-\frac{3}{-4}
12 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-3x=\frac{3}{4}
-3 ਨੂੰ -4 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=\frac{3}{4}+\left(-\frac{3}{2}\right)^{2}
-3, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{3}{2} ਨਿਕਲੇ। ਫੇਰ, -\frac{3}{2} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-3x+\frac{9}{4}=\frac{3+9}{4}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{3}{2} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-3x+\frac{9}{4}=3
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{3}{4} ਨੂੰ \frac{9}{4} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{3}{2}\right)^{2}=3
ਫੈਕਟਰ x^{2}-3x+\frac{9}{4}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{3}{2}=\sqrt{3} x-\frac{3}{2}=-\sqrt{3}
ਸਪਸ਼ਟ ਕਰੋ।
x=\sqrt{3}+\frac{3}{2} x=\frac{3}{2}-\sqrt{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{3}{2} ਨੂੰ ਜੋੜੋ।