ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

6x^{2}-8x=5x
2x ਨੂੰ 3x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x^{2}-8x-5x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x ਨੂੰ ਘਟਾ ਦਿਓ।
6x^{2}-13x=0
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
x\left(6x-13\right)=0
x ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ।
x=0 x=\frac{13}{6}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, x=0 ਅਤੇ 6x-13=0 ਨੂੰ ਹੱਲ ਕਰੋ।
6x^{2}-8x=5x
2x ਨੂੰ 3x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x^{2}-8x-5x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x ਨੂੰ ਘਟਾ ਦਿਓ।
6x^{2}-13x=0
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}}}{2\times 6}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 6 ਨੂੰ a ਲਈ, -13 ਨੂੰ b ਲਈ, ਅਤੇ 0 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-13\right)±13}{2\times 6}
\left(-13\right)^{2} ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{13±13}{2\times 6}
-13 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 13 ਹੈ।
x=\frac{13±13}{12}
2 ਨੂੰ 6 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{26}{12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{13±13}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 13 ਨੂੰ 13 ਵਿੱਚ ਜੋੜੋ।
x=\frac{13}{6}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{26}{12} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
x=\frac{0}{12}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{13±13}{12} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 13 ਵਿੱਚੋਂ 13 ਨੂੰ ਘਟਾਓ।
x=0
0 ਨੂੰ 12 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{13}{6} x=0
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
6x^{2}-8x=5x
2x ਨੂੰ 3x-4 ਨਾਲ ਗੁਣਾ ਕਰਨ ਲਈ ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੋਪਰਟੀ ਨੂੰ ਵਰਤੋਂ।
6x^{2}-8x-5x=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 5x ਨੂੰ ਘਟਾ ਦਿਓ।
6x^{2}-13x=0
-13x ਪ੍ਰਾਪਤ ਕਰਨ ਲਈ -8x ਅਤੇ -5x ਨੂੰ ਮਿਲਾਓ।
\frac{6x^{2}-13x}{6}=\frac{0}{6}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 6 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{13}{6}x=\frac{0}{6}
6 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 6 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{6}x=0
0 ਨੂੰ 6 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x^{2}-\frac{13}{6}x+\left(-\frac{13}{12}\right)^{2}=\left(-\frac{13}{12}\right)^{2}
-\frac{13}{6}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{13}{12} ਨਿਕਲੇ। ਫੇਰ, -\frac{13}{12} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{13}{6}x+\frac{169}{144}=\frac{169}{144}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{13}{12} ਦਾ ਵਰਗ ਕੱਢੋ।
\left(x-\frac{13}{12}\right)^{2}=\frac{169}{144}
ਫੈਕਟਰ x^{2}-\frac{13}{6}x+\frac{169}{144}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{13}{12}\right)^{2}}=\sqrt{\frac{169}{144}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{13}{12}=\frac{13}{12} x-\frac{13}{12}=-\frac{13}{12}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{13}{6} x=0
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{13}{12} ਨੂੰ ਜੋੜੋ।