ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
x ਲਈ ਹਲ ਕਰੋ (ਜਟਿਲ ਹੱਲ)
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

29x^{2}+8x+7=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-8±\sqrt{8^{2}-4\times 29\times 7}}{2\times 29}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 29 ਨੂੰ a ਲਈ, 8 ਨੂੰ b ਲਈ, ਅਤੇ 7 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-8±\sqrt{64-4\times 29\times 7}}{2\times 29}
8 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-8±\sqrt{64-116\times 7}}{2\times 29}
-4 ਨੂੰ 29 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{64-812}}{2\times 29}
-116 ਨੂੰ 7 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8±\sqrt{-748}}{2\times 29}
64 ਨੂੰ -812 ਵਿੱਚ ਜੋੜੋ।
x=\frac{-8±2\sqrt{187}i}{2\times 29}
-748 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x=\frac{-8±2\sqrt{187}i}{58}
2 ਨੂੰ 29 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-8+2\sqrt{187}i}{58}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±2\sqrt{187}i}{58} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -8 ਨੂੰ 2i\sqrt{187} ਵਿੱਚ ਜੋੜੋ।
x=\frac{-4+\sqrt{187}i}{29}
-8+2i\sqrt{187} ਨੂੰ 58 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-2\sqrt{187}i-8}{58}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{-8±2\sqrt{187}i}{58} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -8 ਵਿੱਚੋਂ 2i\sqrt{187} ਨੂੰ ਘਟਾਓ।
x=\frac{-\sqrt{187}i-4}{29}
-8-2i\sqrt{187} ਨੂੰ 58 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
x=\frac{-4+\sqrt{187}i}{29} x=\frac{-\sqrt{187}i-4}{29}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
29x^{2}+8x+7=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
29x^{2}+8x+7-7=-7
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 7 ਨੂੰ ਘਟਾਓ।
29x^{2}+8x=-7
7 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{29x^{2}+8x}{29}=-\frac{7}{29}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 29 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}+\frac{8}{29}x=-\frac{7}{29}
29 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 29 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{8}{29}x+\left(\frac{4}{29}\right)^{2}=-\frac{7}{29}+\left(\frac{4}{29}\right)^{2}
\frac{8}{29}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{4}{29} ਨਿਕਲੇ। ਫੇਰ, \frac{4}{29} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}+\frac{8}{29}x+\frac{16}{841}=-\frac{7}{29}+\frac{16}{841}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{4}{29} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}+\frac{8}{29}x+\frac{16}{841}=-\frac{187}{841}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ -\frac{7}{29} ਨੂੰ \frac{16}{841} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x+\frac{4}{29}\right)^{2}=-\frac{187}{841}
ਫੈਕਟਰ x^{2}+\frac{8}{29}x+\frac{16}{841}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x+\frac{4}{29}\right)^{2}}=\sqrt{-\frac{187}{841}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x+\frac{4}{29}=\frac{\sqrt{187}i}{29} x+\frac{4}{29}=-\frac{\sqrt{187}i}{29}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{-4+\sqrt{187}i}{29} x=\frac{-\sqrt{187}i-4}{29}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{4}{29} ਨੂੰ ਘਟਾਓ।