ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(5a-3\right)\left(-25a^{2}+30a-9\right)
ਰੈਸ਼ਨਲ ਰੂਟ ਥਿਓਰਮ ਦੇ ਮੁਤਾਬਕ, ਪੋਲੀਨੋਮਿਅਲ ਦੇ ਸਾਰੇ ਰੈਸ਼ਨਲ ਰੂਟ \frac{p}{q} ਰੂਪ ਵਿੱਚ ਹੁੰਦੇ ਹਨ, ਜਿੱਥੇ p ਸਥਿਰ ਟਰਮ 27 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ ਅਤੇ q ਆਉਣ ਵਾਲੇ ਕੋਫੀਸ਼ਿਏਂਟ -125 ਦੇ ਨਾਲ ਤਕਸੀਮ ਹੁੰਦਾ ਹੈ। ਅਜਿਹੀ ਇੱਕ ਰੂਟ \frac{3}{5} ਹੈ। ਪੋਲੀਨੋਮਿਅਲ ਨੂੰ 5a-3 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰਕੇ ਇਸ ਦੇ ਫੈਕਟਰ ਬਣਾਓ।
p+q=30 pq=-25\left(-9\right)=225
-25a^{2}+30a-9 'ਤੇ ਵਿਚਾਰ ਕਰੋ। ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ -25a^{2}+pa+qa-9 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। p ਅਤੇ q ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,225 3,75 5,45 9,25 15,15
ਕਿਉਂਕਿ pq ਪਾਜ਼ੇਟਿਵ ਹੈ, p ਅਤੇ q ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ p+q ਪਾਜ਼ੇਟਿਵ ਹੈ, p ਅਤੇ q ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 225 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+225=226 3+75=78 5+45=50 9+25=34 15+15=30
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
p=15 q=15
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 30 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(-25a^{2}+15a\right)+\left(15a-9\right)
-25a^{2}+30a-9 ਨੂੰ \left(-25a^{2}+15a\right)+\left(15a-9\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
-5a\left(5a-3\right)+3\left(5a-3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ -5a ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 3 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(5a-3\right)\left(-5a+3\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 5a-3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
\left(-5a+3\right)\left(5a-3\right)^{2}
ਪੂਰੀ ਕੀਤੀ ਫੈਕਟਰ ਵਾਲੀ ਅਭਿਵਿਅਕਤੀ ਨੂੰ ਦੁਬਾਰਾ ਲਿਖੋ।