ਫੈਕਟਰ
\left(y-1\right)\left(25y-8\right)
ਮੁਲਾਂਕਣ ਕਰੋ
\left(y-1\right)\left(25y-8\right)
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
a+b=-33 ab=25\times 8=200
ਅਭਿਵਿਅਕਤੀ ਦਾ ਫੈਕਟਰ ਸਮੂਹ ਬਣਾ ਕੇ ਕੱਢੋ। ਪਹਿਲੇ, ਅਭਿਵਿਅਕਤੀ ਨੂੰ 25y^{2}+ay+by+8 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
-1,-200 -2,-100 -4,-50 -5,-40 -8,-25 -10,-20
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਨੈਗੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 200 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
-1-200=-201 -2-100=-102 -4-50=-54 -5-40=-45 -8-25=-33 -10-20=-30
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=-25 b=-8
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ -33 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(25y^{2}-25y\right)+\left(-8y+8\right)
25y^{2}-33y+8 ਨੂੰ \left(25y^{2}-25y\right)+\left(-8y+8\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
25y\left(y-1\right)-8\left(y-1\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 25y ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ -8 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(y-1\right)\left(25y-8\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ y-1 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
25y^{2}-33y+8=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
y=\frac{-\left(-33\right)±\sqrt{\left(-33\right)^{2}-4\times 25\times 8}}{2\times 25}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
y=\frac{-\left(-33\right)±\sqrt{1089-4\times 25\times 8}}{2\times 25}
-33 ਦਾ ਵਰਗ ਕਰੋ।
y=\frac{-\left(-33\right)±\sqrt{1089-100\times 8}}{2\times 25}
-4 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-\left(-33\right)±\sqrt{1089-800}}{2\times 25}
-100 ਨੂੰ 8 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{-\left(-33\right)±\sqrt{289}}{2\times 25}
1089 ਨੂੰ -800 ਵਿੱਚ ਜੋੜੋ।
y=\frac{-\left(-33\right)±17}{2\times 25}
289 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
y=\frac{33±17}{2\times 25}
-33 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 33 ਹੈ।
y=\frac{33±17}{50}
2 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
y=\frac{50}{50}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{33±17}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 33 ਨੂੰ 17 ਵਿੱਚ ਜੋੜੋ।
y=1
50 ਨੂੰ 50 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
y=\frac{16}{50}
ਹੁਣ, ਸਮੀਕਰਨ y=\frac{33±17}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 33 ਵਿੱਚੋਂ 17 ਨੂੰ ਘਟਾਓ।
y=\frac{8}{25}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{16}{50} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
25y^{2}-33y+8=25\left(y-1\right)\left(y-\frac{8}{25}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਮੂਲ ਵਿਅੰਜਕ ਦੇ ਗੁਣਨ ਖੰਡ ਬਣਾਓ। x_{1} ਲਈ 1ਅਤੇ x_{2} ਲਈ \frac{8}{25} ਬਦਲ ਹੈ।
25y^{2}-33y+8=25\left(y-1\right)\times \frac{25y-8}{25}
ਸਾਂਝਾ ਡੀਨੋਮਿਨੇਟਰ ਕੱਢ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ ਨੂੰ ਘਟਾ ਕੇ y ਵਿੱਚੋਂ \frac{8}{25} ਨੂੰ ਘਟਾ ਦਿਓ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
25y^{2}-33y+8=\left(y-1\right)\left(25y-8\right)
25 ਅਤੇ 25 ਵਿੱਚ ਸਭ ਤੋਂ ਵੱਧ ਕੋਮਨ ਫੈਕਟਰ 25 ਨੂੰ ਰੱਦ ਕਰੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}