x ਲਈ ਹਲ ਕਰੋ
x=\frac{\sqrt{661}+19}{50}\approx 0.894198405
x=\frac{19-\sqrt{661}}{50}\approx -0.134198405
ਗ੍ਰਾਫ
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
25x^{2}-19x-3=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 25\left(-3\right)}}{2\times 25}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 25 ਨੂੰ a ਲਈ, -19 ਨੂੰ b ਲਈ, ਅਤੇ -3 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
x=\frac{-\left(-19\right)±\sqrt{361-4\times 25\left(-3\right)}}{2\times 25}
-19 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-\left(-19\right)±\sqrt{361-100\left(-3\right)}}{2\times 25}
-4 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-19\right)±\sqrt{361+300}}{2\times 25}
-100 ਨੂੰ -3 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-\left(-19\right)±\sqrt{661}}{2\times 25}
361 ਨੂੰ 300 ਵਿੱਚ ਜੋੜੋ।
x=\frac{19±\sqrt{661}}{2\times 25}
-19 ਸੰਖਿਆ ਦਾ ਵਿਪਰੀਤ 19 ਹੈ।
x=\frac{19±\sqrt{661}}{50}
2 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{\sqrt{661}+19}{50}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{19±\sqrt{661}}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 19 ਨੂੰ \sqrt{661} ਵਿੱਚ ਜੋੜੋ।
x=\frac{19-\sqrt{661}}{50}
ਹੁਣ, ਸਮੀਕਰਨ x=\frac{19±\sqrt{661}}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 19 ਵਿੱਚੋਂ \sqrt{661} ਨੂੰ ਘਟਾਓ।
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
25x^{2}-19x-3=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
25x^{2}-19x-3-\left(-3\right)=-\left(-3\right)
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 3 ਨੂੰ ਜੋੜੋ।
25x^{2}-19x=-\left(-3\right)
-3 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
25x^{2}-19x=3
0 ਵਿੱਚੋਂ -3 ਨੂੰ ਘਟਾਓ।
\frac{25x^{2}-19x}{25}=\frac{3}{25}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 25 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
x^{2}-\frac{19}{25}x=\frac{3}{25}
25 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 25 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{25}x+\left(-\frac{19}{50}\right)^{2}=\frac{3}{25}+\left(-\frac{19}{50}\right)^{2}
-\frac{19}{25}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ -\frac{19}{50} ਨਿਕਲੇ। ਫੇਰ, -\frac{19}{50} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{3}{25}+\frac{361}{2500}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ -\frac{19}{50} ਦਾ ਵਰਗ ਕੱਢੋ।
x^{2}-\frac{19}{25}x+\frac{361}{2500}=\frac{661}{2500}
ਸਾਂਝਾ ਡਿਨੋਮੀਨੇਟਰ(ਹੇਠਲੀ ਸੰਖਿਆ) ਲੱਭ ਕੇ ਅਤੇ ਨਿਉਮਰੇਟਰਾਂ(ਉੱਤਲੀ ਸੰਖਿਆ) ਨੂੰ ਜੋੜ ਕੇ \frac{3}{25} ਨੂੰ \frac{361}{2500} ਵਿੱਚ ਜੋੜੋ। ਫੇਰ, ਫ੍ਰੈਕਸ਼ਨ ਨੂੰ ਸਭ ਤੋਂ ਛੋਟੀਆਂ ਸੰਖਿਆਵਾਂ ਵਿੱਚ ਘਟਾ ਦਿਓ, ਜੇ ਸੰਭਵ ਹੋਵੇ।
\left(x-\frac{19}{50}\right)^{2}=\frac{661}{2500}
ਫੈਕਟਰ x^{2}-\frac{19}{25}x+\frac{361}{2500}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(x-\frac{19}{50}\right)^{2}}=\sqrt{\frac{661}{2500}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
x-\frac{19}{50}=\frac{\sqrt{661}}{50} x-\frac{19}{50}=-\frac{\sqrt{661}}{50}
ਸਪਸ਼ਟ ਕਰੋ।
x=\frac{\sqrt{661}+19}{50} x=\frac{19-\sqrt{661}}{50}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ \frac{19}{50} ਨੂੰ ਜੋੜੋ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}