ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
w ਲਈ ਹਲ ਕਰੋ
Tick mark Image

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

\left(5w-4\right)\left(5w+4\right)=0
25w^{2}-16 'ਤੇ ਵਿਚਾਰ ਕਰੋ। 25w^{2}-16 ਨੂੰ \left(5w\right)^{2}-4^{2} ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ। ਵਰਗਾਂ ਦੇ ਅੰਤਰ ਨੂੰ ਇਸ ਨਿਯਮ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਵਿੱਚ ਵੰਡਿਆ ਜਾ ਸਕਦਾ ਹੈ: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right)।
w=\frac{4}{5} w=-\frac{4}{5}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 5w-4=0 ਅਤੇ 5w+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
25w^{2}=16
ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ 16 ਜੋੜੋ। ਸਿਫਰ ਵਿੱਚ ਜੋੜੀ ਗਈ ਰਕਮ ਦਾ ਜਵਾਬ ਉਹੀ ਰਕਮ ਹੁੰਦੀ ਹੈ।
w^{2}=\frac{16}{25}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 25 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
w=\frac{4}{5} w=-\frac{4}{5}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
25w^{2}-16=0
ਇੱਕ x^{2} ਸੰਖਿਆ ਦੇ ਨਾਲ, ਪਰ ਜਿਸ ਦੇ ਨਾਲ ਕੋਈ x ਸੰਖਿਆ ਨਹੀਂ ਹੁੰਦੀ ਹੈ, ਅਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਹਾਲੇ ਤੱਕ ਵਰਗਾਕਾਰ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਦੇ ਨਾਲ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ, ਇੱਕ ਵਾਰ ਇਹਨਾਂ ਨੂੰ ਸਟੈਂਡਰਡ ਫਾਰਮ: ax^{2}+bx+c=0 ਵਿੱਚ ਪਾ ਦਿੱਤਾ ਜਾਵੇ।
w=\frac{0±\sqrt{0^{2}-4\times 25\left(-16\right)}}{2\times 25}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 25 ਨੂੰ a ਲਈ, 0 ਨੂੰ b ਲਈ, ਅਤੇ -16 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
w=\frac{0±\sqrt{-4\times 25\left(-16\right)}}{2\times 25}
0 ਦਾ ਵਰਗ ਕਰੋ।
w=\frac{0±\sqrt{-100\left(-16\right)}}{2\times 25}
-4 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{0±\sqrt{1600}}{2\times 25}
-100 ਨੂੰ -16 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{0±40}{2\times 25}
1600 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
w=\frac{0±40}{50}
2 ਨੂੰ 25 ਵਾਰ ਗੁਣਾ ਕਰੋ।
w=\frac{4}{5}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{0±40}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। 10 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{40}{50} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
w=-\frac{4}{5}
ਹੁਣ, ਸਮੀਕਰਨ w=\frac{0±40}{50} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। 10 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-40}{50} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
w=\frac{4}{5} w=-\frac{4}{5}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।