ਮੁੱਖ ਸਮੱਗਰੀ 'ਤੇ ਜਾਓ
ਫੈਕਟਰ
Tick mark Image
ਮੁਲਾਂਕਣ ਕਰੋ
Tick mark Image
ਗ੍ਰਾਫ

ਵੈੱਬ ਖੋਜ ਤੋਂ ਸਮਾਨ ਸਮੱਸਿਆਵਾਂ

ਸਾਂਝਾ ਕਰੋ

2\left(12x^{2}+x+1\right)
2 ਨੂੰ ਵੱਖਰਾ ਕਰ ਦਿਓ। ਪੋਲੀਨੋਮਿਅਲ 12x^{2}+x+1 ਦੇ ਫੈਕਟਰ ਨਹੀਂ ਬਣਾਏ ਜਾਂਦੇ ਕਿਉਂਕਿ ਇਸਦੇ ਕੋਈ ਰੈਸ਼ਨਲ ਰੂਟ ਨਹੀਂ ਹਨ।
24x^{2}+2x+2=0
ਦੋ-ਘਾਤੀ ਪੋਲੀਨੋਮੀਅਲ ਦੇ ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ਟ੍ਰਾਂਸਫੋਰਮੇਸ਼ਨ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਫੈਕਟਰ ਬਣਾਏ ਜਾ ਸਕਦੇ ਹਨ, ਜਿੱਥੇ x_{1} ਅਤੇ x_{2} ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ ax^{2}+bx+c=0 ਦੇ ਹੱਲ ਹੁੰਦੇ ਹਨ।
x=\frac{-2±\sqrt{2^{2}-4\times 24\times 2}}{2\times 24}
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
x=\frac{-2±\sqrt{4-4\times 24\times 2}}{2\times 24}
2 ਦਾ ਵਰਗ ਕਰੋ।
x=\frac{-2±\sqrt{4-96\times 2}}{2\times 24}
-4 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{4-192}}{2\times 24}
-96 ਨੂੰ 2 ਵਾਰ ਗੁਣਾ ਕਰੋ।
x=\frac{-2±\sqrt{-188}}{2\times 24}
4 ਨੂੰ -192 ਵਿੱਚ ਜੋੜੋ।
24x^{2}+2x+2
ਕਿਉਂਕਿ ਕਿਸੇ ਨਕਾਰਾਤਮਕ ਸੰਖਿਆ ਦਾ ਵਰਗ ਮੂਲ ਅਸਲ ਫਿਲਡ ਵਿੱਚ ਪਰਿਭਾਸ਼ਿਤ ਨਹੀਂ ਹੈ, ਕੋਈ ਵੀ ਸਮਾਧਾਨ ਨਹੀਂ ਹਨ। ਕ੍ਵਾਡਰਿਕ ਪੋਲੀਨੋਮਿਅਲ ਦਾ ਫੈਕਟਰ ਨਹੀਂ ਬਣਾਇਆ ਜਾ ਸਕਦਾ।