k ਲਈ ਹਲ ਕਰੋ
k = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
k=-\frac{3}{4}=-0.75
ਸਾਂਝਾ ਕਰੋ
ਕਲਿੱਪਬੋਰਡ 'ਤੇ ਕਾਪੀ ਕੀਤਾ ਗਿਆ
12k^{2}+25k+12=0
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 2 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
a+b=25 ab=12\times 12=144
ਸਮੀਕਰਨ ਨੂੰ ਹੱਲ ਕਰਨ ਲਈ, ਸਮੂਹ ਬਣਾ ਕੇ ਖੱਬੇ ਪਾਸੇ ਦਾ ਫੈਕਟਰ ਕੱਢੋ। ਪਹਿਲਾਂ, ਖੱਬੇ ਪਾਸੇ ਵਾਲੇ ਨੂੰ 12k^{2}+ak+bk+12 ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖਣ ਦੀ ਲੋੜ ਹੁੰਦੀ ਹੈ। a ਅਤੇ b ਨੂੰ ਕੱਢਣ ਲਈ, ਹੱਲ ਕੀਤੇ ਜਾਣ ਵਾਲੇ ਸਿਸਟਮ ਨੂੰ ਸੈਟਅੱਪ ਕਰੋ।
1,144 2,72 3,48 4,36 6,24 8,18 9,16 12,12
ਕਿਉਂਕਿ ab ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦਾ ਸਮਾਨ ਚਿੰਨ੍ਹ ਹੁੰਦਾ ਹੈ। ਕਿਉਂਕਿ a+b ਪਾਜ਼ੇਟਿਵ ਹੈ, a ਅਤੇ b ਦੋਵੇਂ ਪਾਜ਼ੇਟਿਵ ਹੁੰਦੇ ਹਨ। ਅਜਿਹੇ ਸਾਰੇ ਪੂਰਣ ਅੰਕ ਜੋੜਿਆਂ ਦੀ ਸੂਚੀ ਬਣਾਓ ਜੋ 144 ਪ੍ਰੌਡਕਟ ਦਿੰਦੇ ਹਨ।
1+144=145 2+72=74 3+48=51 4+36=40 6+24=30 8+18=26 9+16=25 12+12=24
ਹਰ ਜੋੜੇ ਲਈ ਕੁੱਲ ਜੋੜ ਦਾ ਹਿਸਾਬ ਲਗਾਓ।
a=9 b=16
ਹੱਲ ਅਜਿਹਾ ਜੋੜਾ ਹੁੰਦਾ ਹੈ, ਜੋ 25 ਦਾ ਜੋੜ ਦਿੰਦਾ ਹੈ।
\left(12k^{2}+9k\right)+\left(16k+12\right)
12k^{2}+25k+12 ਨੂੰ \left(12k^{2}+9k\right)+\left(16k+12\right) ਵਜੋਂ ਦੁਬਾਰਾ ਲਿਖੋ।
3k\left(4k+3\right)+4\left(4k+3\right)
ਪਹਿਲੇ ਸਮੂਹ ਵਿੱਚ 3k ਦਾ ਅਤੇ ਦੂਜੇ ਵਿੱਚ 4 ਦਾ ਫੈਕਟਰ ਬਣਾਓ।
\left(4k+3\right)\left(3k+4\right)
ਡਿਸਟ੍ਰੀਬਿਉਟਿਵ ਪ੍ਰੌਪਰਟੀ ਦੀ ਵਰਤੋਂ ਕਰਕੇ ਕੋਮਨ ਟਰਮ 4k+3 ਦਾ ਫੈਕਟਰ ਕੱਢੋ।
k=-\frac{3}{4} k=-\frac{4}{3}
ਸਮੀਕਰਨਾਂ ਦੇ ਹੱਲ ਕੱਢਣ ਲਈ, 4k+3=0 ਅਤੇ 3k+4=0 ਨੂੰ ਹੱਲ ਕਰੋ।
24k^{2}+50k+24=0
ax^{2}+bx+c=0 ਰੂਪ ਦੇ ਸਾਰੇ ਸਮੀਕਰਨਾਂ ਨੂੰ ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਵਰਤ ਕੇ ਹੱਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ: \frac{-b±\sqrt{b^{2}-4ac}}{2a}। ਕਵੈਡ੍ਰਿਕ ਸੂਤਰ ਦੋ ਸਮਾਧਾਨ ਦਿੰਦਾ ਹੈ, ਇੱਕ ਜਦੋਂ ± ਜੋੜ ਹੁੰਦਾ ਹੈ ਅਤੇ ਦੂਜਾ ਜਦੋਂ ਇਹ ਘਟਾਉ ਹੁੰਦਾ ਹੈ।
k=\frac{-50±\sqrt{50^{2}-4\times 24\times 24}}{2\times 24}
ਇਹ ਸਮੀਕਰਨ ਮਿਆਰੀ ਰੂਪ ਵਿੱਚ ਹੈ: ax^{2}+bx+c=0. ਵਰਗਾਤਮਕ ਸੂਤਰ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ਵਿੱਚ 24 ਨੂੰ a ਲਈ, 50 ਨੂੰ b ਲਈ, ਅਤੇ 24 ਨੂੰ c ਲਈ ਬਦਲ ਦਿਓ।
k=\frac{-50±\sqrt{2500-4\times 24\times 24}}{2\times 24}
50 ਦਾ ਵਰਗ ਕਰੋ।
k=\frac{-50±\sqrt{2500-96\times 24}}{2\times 24}
-4 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
k=\frac{-50±\sqrt{2500-2304}}{2\times 24}
-96 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
k=\frac{-50±\sqrt{196}}{2\times 24}
2500 ਨੂੰ -2304 ਵਿੱਚ ਜੋੜੋ।
k=\frac{-50±14}{2\times 24}
196 ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
k=\frac{-50±14}{48}
2 ਨੂੰ 24 ਵਾਰ ਗੁਣਾ ਕਰੋ।
k=-\frac{36}{48}
ਹੁਣ, ਸਮੀਕਰਨ k=\frac{-50±14}{48} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਪਲੱਸ ਹੁੰਦਾ ਹੈ। -50 ਨੂੰ 14 ਵਿੱਚ ਜੋੜੋ।
k=-\frac{3}{4}
12 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-36}{48} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
k=-\frac{64}{48}
ਹੁਣ, ਸਮੀਕਰਨ k=\frac{-50±14}{48} ਨੂੰ ਸੁਲਝਾਓ ਜਦੋਂ ± ਮਾਈਨਸ ਹੁੰਦਾ ਹੈ। -50 ਵਿੱਚੋਂ 14 ਨੂੰ ਘਟਾਓ।
k=-\frac{4}{3}
16 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{-64}{48} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
k=-\frac{3}{4} k=-\frac{4}{3}
ਸਮੀਕਰਨ ਹੁਣ ਸੁਲਝ ਗਿਆ ਹੈ।
24k^{2}+50k+24=0
ਇਹੋ ਜਿਹੇ ਵਰਗਾਕਾਰ ਸਮੀਕਰਨਾਂ ਨੂੰ ਵਰਗ ਪੂਰਾ ਕਰਕੇ ਹਲ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ। ਵਰਗ ਨੂੰ ਪੂਰਾ ਕਰਨ ਲਈ, ਸਮੀਕਰਨ ਦਾ ਪਹਿਲੇ x^{2}+bx=c ਦੇ ਫਾਰਮ ਵਿੱਚ ਹੋਣਾ ਲਾਜ਼ਮੀ ਹੈ।
24k^{2}+50k+24-24=-24
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ 24 ਨੂੰ ਘਟਾਓ।
24k^{2}+50k=-24
24 ਨੂੰ ਆਪਣੇ-ਆਪ ਵਿੱਚੋਂ ਘਟਾ ਕੇ 0 ਬੱਚਦਾ ਹੈ।
\frac{24k^{2}+50k}{24}=-\frac{24}{24}
ਦੋਹਾਂ ਪਾਸਿਆਂ ਨੂੰ 24 ਨਾਲ ਤਕਸੀਮ ਕਰ ਦਿਓ।
k^{2}+\frac{50}{24}k=-\frac{24}{24}
24 ਨਾਲ ਤਕਸੀਮ ਕਰਨਾ 24 ਦੁਆਰਾ ਗੁਣਨ ਨੂੰ ਖਤਮ ਕਰ ਦਿੰਦਾ ਹੈ।
k^{2}+\frac{25}{12}k=-\frac{24}{24}
2 ਨੂੰ ਕੱਢ ਕੇ ਅਤੇ ਰੱਦ ਕਰਕੇ ਫਰੇਕਸ਼ਨ \frac{50}{24} ਨੂੰ ਸਭ ਤੋਂ ਹੇਠਲੇ ਅੰਕਾਂ ਤੱਕ ਘਟਾਓ।
k^{2}+\frac{25}{12}k=-1
-24 ਨੂੰ 24 ਦੇ ਨਾਲ ਤਕਸੀਮ ਕਰੋ।
k^{2}+\frac{25}{12}k+\left(\frac{25}{24}\right)^{2}=-1+\left(\frac{25}{24}\right)^{2}
\frac{25}{12}, x ਟਰਮ ਦੇ ਕੋਐਫੀਸ਼ੀਐਂਟ ਨੂੰ, 2 ਨਾਲ ਤਕਸੀਮ ਕਰੋ, ਤਾਂ ਜੋ \frac{25}{24} ਨਿਕਲੇ। ਫੇਰ, \frac{25}{24} ਦੇ ਵਰਗ ਨੂੰ ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਵਿੱਚ ਜੋੜ ਦਿਓ। ਇਹ ਸਟੈਪ ਸਮੀਕਰਨ ਦੇ ਖੱਬੇ ਪਾਸੇ ਨੂੰ ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਬਣਾ ਦਿੰਦਾ ਹੈ।
k^{2}+\frac{25}{12}k+\frac{625}{576}=-1+\frac{625}{576}
ਫ੍ਰੈਕਸ਼ਨ ਦੇ ਨਿਉਮਰੇਟਰ ਅਤੇ ਡੀਨੋਮਿਨੇਟਰ ਦੋਹਾਂ ਦਾ ਵਰਗ ਕੱਢ ਕੇ \frac{25}{24} ਦਾ ਵਰਗ ਕੱਢੋ।
k^{2}+\frac{25}{12}k+\frac{625}{576}=\frac{49}{576}
-1 ਨੂੰ \frac{625}{576} ਵਿੱਚ ਜੋੜੋ।
\left(k+\frac{25}{24}\right)^{2}=\frac{49}{576}
ਫੈਕਟਰ k^{2}+\frac{25}{12}k+\frac{625}{576}। ਸਾਧਾਰਨ ਤੌਰ ਤੇ, ਜਦੋਂ x^{2}+bx+c ਇੱਕ ਪਰਫੈਕਟ ਸਕ੍ਵੇਅਰ ਹੁੰਦਾ ਹੈ ਤਾਂ ਇਸ ਨੂੰ ਹਮੇਸ਼ਾ \left(x+\frac{b}{2}\right)^{2} ਵਜੋਂ ਫੈਕਟਰ ਕੀਤਾ ਜਾ ਸਕਦਾ ਹੈ।
\sqrt{\left(k+\frac{25}{24}\right)^{2}}=\sqrt{\frac{49}{576}}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਦਾ ਵਰਗ ਮੂਲ ਲਓ।
k+\frac{25}{24}=\frac{7}{24} k+\frac{25}{24}=-\frac{7}{24}
ਸਪਸ਼ਟ ਕਰੋ।
k=-\frac{3}{4} k=-\frac{4}{3}
ਸਮੀਕਰਨ ਦੇ ਦੋਹਾਂ ਪਾਸਿਆਂ ਤੋਂ \frac{25}{24} ਨੂੰ ਘਟਾਓ।
ਉਦਾਹਰਨ
ਦੋ-ਘਾਤੀ ਸਮੀਕਰਨ
{ x } ^ { 2 } - 4 x - 5 = 0
ਟ੍ਰਿਗਨੋਮੈਟਰੀ
4 \sin \theta \cos \theta = 2 \sin \theta
ਰੇਖਿਕ ਸਮੀਕਰਨ
y = 3x + 4
ਐਰਿਥਮੈਟਿਕ
699 * 533
ਮੈਟਰਿਕਸ
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ਸਮਕਾਲੀ ਸਮੀਕਰਨ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ਵਖਰੇਵਾਂ
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ਇੰਟੀਗ੍ਰੇਸ਼ਨ
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ਸੀਮਾਵਾਂ
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}